// 查找节点的方法booleansearch(intkey){returnsearchRec(root,key);// 从根节点开始递归查找}// 递归查找的辅助函数booleansearchRec(Noderoot,intkey){// 基本情况:如果当前节点为空,返回falseif(root==null){returnfalse;}// 如果找到了关键字,返回trueif(key==root.key){returntrue;}// 根据BST特性继续...
二、完整代码实现(Java) 1、二叉搜索树 1.1、 基本概念 二叉树的一个性质是一棵平均二叉树的深度要比节点个数N小得多。分析表明其平均深度为O(N)O(N),而对于特殊类型的二叉树,即二叉查找树(binary search tree),其深度的平均值为O(logN)O(logN)。 二叉查找树的性质: 对于树中的每个节点X,它的左子树中...
整体实现的代码如下: 1importjava.util.ArrayDeque;2importjava.util.Collection;3importjava.util.NoSuchElementException;4importjava.util.Queue;5/**6* data structure unbalanced binary search tree7*@authormichael8*@param<E>9*/10publicclassBinarySearchTree<EextendsComparable<E>>{1112/**13* 二叉树节点个...
Skip navigation links Java SE 21 & JDK 21 Overview Module Package Class Use Tree Preview New Deprecated Index Help Summary: Nested | Field | Constr | Method Detail: Field | Constr | Method SEARCH Module jdk.compiler Package com.sun.source.tree Interface BinaryTree All Superinterfaces: ...
我理解的数据结构(五)—— 二分搜索树(Binary Search Tree) 一、二叉树 和链表一样,动态数据结构 具有唯一根节点 每个节点最多有两个子节点 每个节点最多有一个父节点 具有天然的递归结构 每个节点的左子树也是二叉树 每个节点的右子树也是二叉树 一个节点或者空也是二叉树 ...
Java tree数据接口的json java binary tree Java实现二叉查找树(Binary Search Tree) 二叉查找树(英语:Binary Search Tree),也称二叉搜索树、有序二叉树(英语:ordered binary tree),排序二叉树(英语:sorted binary tree),是指一棵空树或者具有下列性质的二叉树:...
Java library implementing fundamental data structures, including Binary Search Tree (BST), AVL Tree and Red Black Tree designed for efficient data storage and retrieval - WildandArt/TreeLibrary
start at its leaf nodes and assign them a height of 0. Then move up the tree using the three rules outlined to compute the height of each leaf nodes' parent. Continue in this manner until every node of the tree has been labeled. The height of the tree, then, is the height of the...
228 changes: 114 additions & 114 deletions228Tree.java Original file line numberDiff line numberDiff line change Expand Up@@ -16,21 +16,21 @@ public static void main(String[] args) { tree.inorder(); } publicbooleaninsert(intval) { ...
start at its leaf nodes and assign them a height of 0. Then move up the tree using the three rules outlined to compute the height of each leaf nodes' parent. Continue in this manner until every node of the tree has been labeled. The height of the tree, then, is the height of the...