从图1可以看到,在BiLSTM上方我们添加了一个CRF层。具体地,在基于BiLSTM获得各个位置的标签向量之后,这些标签向量将被作为发射分数传入CRF中,发射这个概念是从CRF里面带出来的,后边在介绍CRF部分会更多地提及,这里先不用纠结这一点。 这些发射分数(标签向量)传入CRF之后,CRF会据此解码出一串标签序列。那么问题来了,...
为方便直观地看到BiLSTM+CRF是什么,我们先来贴一下BiLSTM+CRF的模型结构图,如图1所示。 从图1可以看到,在BiLSTM上方我们添加了一个CRF层。具体地,在基于BiLSTM获得各个位置的标签向量之后,这些标签向量将被作为发射分数传入CRF中,发射这个概念是从CRF里面带出来的,后边在介绍CRF部分会更多地提及,这里先不用纠结这...
从图1可以看到,在BiLSTM上方我们添加了一个CRF层。具体地,在基于BiLSTM获得各个位置的标签向量之后,这些标签向量将被作为发射分数传入CRF中,发射这个概念是从CRF里面带出来的,后边在介绍CRF部分会更多地提及,这里先不用纠结这一点。 这些发射分数(标签向量)传入CRF之后,CRF会据此解码出一串标签序列。那么问题来了,从...
CRF是无向图模型,通过对MEMM进行改进,不直接计算状态间的转移概率,而是计算最大团势函数的乘积所得的归一化后的分值,如果要计算概率需要除以partition function, 即Z,下图中的Y表示给定的序列如下所示 CRF是判别模型,且属于log-linear model, 即给定序列X,求对应的Y序列的概率,表示如下: 模型的参数化形式 img1....
尽管一般不需要详细了解BiLSTM层的原理,但是为了更容易知道CRF层的运行原理,我们需要知道BiLSTM的输出层。这些分值将作为CRF的输入. 如下图所示, BiLSTM层的输出为每一个标签的预测分值,例如对于单元𝑤0,BiLSTM层输出的是1.5 (B-Person), 0.9 (I-Person), 0.1 (B-Organization), 0.08 (I-Organization) 0.05...
从图1可以看到,在BiLSTM上方我们添加了一个CRF层。具体地,在基于BiLSTM获得各个位置的标签向量之后,这些标签向量将被作为发射分数传入CRF中,发射这个概念是从CRF里面带出来的,后边在介绍CRF部分会更多地提及,这里先不用纠结这一点。 这些发射分数(标签向量)传入CRF之后,CRF会据此解码出一串标签序列。那么问题来了,从...
第二,这些字或词嵌入为BiLSTM-CRF模型的输入,输出的是句子x中每个单元的标签。 图1. Bi-LSTM结构图 尽管一般不需要详细了解BiLSTM层的原理,但是为了更容易知道CRF层的运行原理,我们需要知道BiLSTM的输出层。 图2.Bi-LSTM标签预测原理图 如上图所示,BiLSTM层的输出为每一个标签的预测分值,例如,对于单元w0,BiL...
BILSTM+CRF 原理解释: 一、BiLSTM+softmax lstm也可以做序列标注问题。如下图所示 双向lstm后接一个softmax层,输出各个label的概率。那为何还要加一个crf层呢? 我的理解是softmax层的输出是相互独立的,即虽然BiLSTM学习到了上下文的信息,但是输出相互之间并没有影响,它只是在每一步挑选一个最大概率值的label输出...
这样的定义,其实帮助我们减小了建模CRF的代价。 图2 一种经典的线性链CRF结构图 2.2 发射分数和转移分数 上边我们探讨了线性链CRF的定义以及它的一种经典图结构,接下来我们继续回到我们建模的命名实体任务上来。 在图2中,x=[x0,x1,...,xi,...,xn]代表输入变量,对应到我们当前任务就是输入文本序列,y=[y0,...
3.1 NCRF++原理介绍 NCRF++模型的结构如下图所示,其结构跟BILSTM-CRF非常像,只是在词向量的基础上,采用CNN或者LSTM对这个词汇的字符向量进行编码,将其转化为一个字符向量,然后将字符向量与词向量进行拼接,再进去BILSTM层。对于字符向量部分,作者采用的CNN是TextCNN的结构,LSTM采用的是BILSTM的结构...