传统的的语言模型的问题在于,关于传统的语言模型训练, 都是采用left-to-right, 或者left-to-right + right-to-left结合的方式, 但这种单向方式或者拼接的方式提取特征的能力有限,没有同时利用到Bidirectional信息. 为此BERT提出一个深度双向表达模型(deep bidirectional representation). 即采用MASK任务来训练模型。 例如...
Bert-BiLSTM-CRF模型是一个深度学习模型,由BERT、BiLSTM和CRF三个部分组成。BERT是一种预训练语言模型,能够理解和生成自然语言文本;BiLSTM是一种循环神经网络,能够处理序列数据;CRF是一种条件随机场,能够识别序列中的结构模式。下面我们将详细解析这个模型的结构和原理。首先,让我们来看一下BERT。BERT是一种预训练语...
基线模型 Bert-Bilstm-CRF 来看下基准模型的实现,输入是wordPiece tokenizer得到的tokenid,进入Bert预训练模型抽取丰富的文本特征得到batch_size * max_seq_len * emb_size的输出向量,输出向量过Bi-LSTM从中提取实体识别所需的特征,得到batch_size * max_seq_len * (2*hidden_size)的向量,最终进入CRF层进行解码...
目前流行的模型包括BERT、RoBERTa、GPT系列等。假设我们选择BERT作为我们的基础模型,并且我们的目标是解决一个文本分类任务。我们需要安装并导入必要的Python库,如Transformers和PyTorch。 # 导入所需库importtorchfromtransformersimportBertTokenizer, BertForSequenceClassification, AdamW, get_linear_schedule_with_warmupfrom...
基线模型 Bert-Bilstm-CRF 来看下基准模型的实现,输⼊是wordPiece tokenizer得到的tokenid,进⼊Bert预训练模型抽取丰富的⽂本特征得到batch_size * max_seq_len * emb_size的输出向量,输出向量过Bi-LSTM从中提取实体识别所需的特征,得到batch_size * max_seq_len * (2*hidden_size)的向量,最终进⼊...
来看下基准模型的实现,输入是wordPiece tokenizer得到的tokenid,进入Bert预训练模型抽取丰富的文本特征得到batch_size * max_seq_len * emb_size的输出向量,输出向量过Bi-LSTM从中提取实体识别所需的特征,得到batch_size * max_seq_len * (2*hidden_size)的向量,最终进入CRF层进行解码,计算最优的标注序列。