model.visualize_barchart() 上面的图表中,你可以看到话题4的热门词是proud, thank, cheer4india, cheer和congrats。 可视化主题相似性 你还可以可视化某些主题之间的相似程度。要可视化热图,只需调用。 model.visualize_heatmap() 在上图中,你可以看到topic 93与topic 102相似,相似度为0.933。 主题减少 有时您可能...
model.visualize_barchart() 1. 上面的图表中,你可以看到话题4的热门词是proud, thank, cheer4india, cheer和congrats。 可视化主题相似性 你还可以可视化某些主题之间的相似程度。要可视化热图,只需调用。 复制 model.visualize_heatmap() 1. 在上图中,你可以看到topic 93与topic 102相似,...
BERTopic可将主题以embeddings形式(向量)表示, 因此我们可以应用余弦相似度来创建相似度矩阵。每两两主题可进行余弦计算,最终结果将是一个矩阵,显示主题间的相似程度。 topic_model.visualize_heatmap(n_clusters=10,width=1000,height=1000) 通过根据每个主题表示的 c-TF-IDF 分数创建条形图来可视化主题的选定词语。...
使用umap降维,使用hdbscan聚类 使用hdbscan的原因是"a cluster will not always lie within a sphere around a cluster centroid" fromumapimportUMAPfromhdbscanimportHDBSCAN umap_model = UMAP(n_neighbors=15, n_components=5, min_dist=0.0, metric='cosine', random_state=42) hdbscan_model = HDBSCAN(min_...
Visualize Topic Terms .visualize_barchart() Visualize Topic Similarity .visualize_heatmap() Visualize Term Score Decline .visualize_term_rank() Visualize Topic Probability Distribution .visualize_distribution(probs[0]) Visualize Topics over Time .visualize_topics_over_time(topics_over_time) Visualize To...
Visualize Topic Hierarchy.visualize_hierarchy() Visualize Topic Tree.get_topic_tree(hierarchical_topics) Visualize Topic Terms.visualize_barchart() Visualize Topic Similarity.visualize_heatmap() Visualize Term Score Decline.visualize_term_rank()
Search or jump to... Search code, repositories, users, issues, pull requests... Provide feedback We read every piece of feedback, and take your input very seriously. Include my email address so I can be contacted Cancel Submit feedback Saved searches Use saved searches to filter your...
* `hierarchical_topics`, `reduce_topics`, `visualize_hierarchy`, `visualize_heatmap`, `visualize_topics` * Linting with Ruff by [@afuetterer](https://github.com/afuetterer) in [#2033](https://github.com/MaartenGr/BERTopic/pull/2033) * Switch from setup.py to pyproject.toml by [@a...
My approach involves adapting thevisualize_heatmapfunction and returning thedistance_matrixandnew_labels. See full code as used below: def topic_similarity(topic_model, topics: List[int] = None, top_n_topics: int = None, n_clusters: int = None): ...
Visualize Topic Hierarchy .visualize_hierarchy() Visualize Topic Tree .get_topic_tree(hierarchical_topics) Visualize Topic Terms .visualize_barchart() Visualize Topic Similarity .visualize_heatmap() Visualize Term Score Decline .visualize_term_rank() Visualize Topic Probability Distribution .visualize_distr...