topic_model = BERTopic( hdbscan_model=hdbscan_model, vectorizer_model=vectorizer_model, embedding_model=embedding_model, representation_model=representation_model ) 解决方法: 1.在CountVectorizer中加入自定义的token_pat
如果你想要改变默认的词嵌入模型,可以在初始化 BERTopic 时,通过 embedding_model 参数来指定你想要使用的模型。要让 BERTopic 使用 HuggingFace 上的模型,如“bert-base-chinese”,你可以在创建 BERTopic 实例时将其作为参数传入。 首先,需要安装 sentence-transformers 库,这个库是基于 HuggingFace 的 Transformers 库...
要选择一个不同的预训练嵌入模型,我们只需将其通过BERTopic,将变量embedding_model指向相应的sentence-transformers模型:from bertopic import BERTopicmodel = BERTopic(embedding_model="xlm-r-bert-base-nli-stsb-mean-tokens")单击此处查看受支持的sentence-transformers模型列表:https://www.sbert.net/docs/pret...
topic_model.save("path/to/my/model_dir", serialization="safetensors", save_ctfidf=True, save_embedding_model=embedding_model) loaded_model = BERTopic.load("path/to/my/model_dir")
model = BERTopic(embedding_model="xlm-r-bert-base-nli-stsb-mean-tokens") 单击此处查看受支持的sentence-transformers模型列表:https://www.sbert.net/docs/pretrained_models.html。 保存/加载BERTopic模型 我们可以通过调用save轻松保存经过训练的BERTopic模型: ...
bertopic是基于BERT模型的话题建模工具。它的参数包括: 1. num_topics: 指定要生成的主题数目。默认值为10。 2. embedding_model: 使用的嵌入模型,可以是"bert-base-uncased"、"bert-large-uncased"或其他可用的BERT模型。默认值为"bert-base-uncased"。 3. nr_topics_from_umap: 从UMAP生成的嵌入中选择的主题...
topic_model = BERTopic( embedding_model="thenlper/gte-small", min_topic_size=15, zeroshot_topic_list=zeroshot_topic_list, zeroshot_min_similarity=.85, representation_model=KeyBERTInspired() ) topics, probs = topic_model.fit_transform(docs) ...
Based on the 2164 relevant papers in the China National Knowledge Infrastructure database, the "gte base zh" vector embedding model and the "UMAP+HDBSCAN" clustering algorithm are used for topic modeling, and KeyBERTInspied and MMR are used for topic fine-tuning. Construct an author co-...
为了澄清,以下代码片段并不是由OP调用的:outlier_embeddings = self.embedding_model.embed_images(...
topic_model = Top2Vec( docs_bad, embedding_model="universal-sentence-encoder", speed="deep-learn", tokenizer=tok, ngram_vocab=True, ngram_vocab_args={"connector_words": "phrases.ENGLISH_CONNECTOR_WORDS"}, ) The main arguments of Top2Vec are: ...