一.在实体识别中,bert+lstm+crf也是近来常用的方法。这里的bert可以充当固定的embedding层,也可以用来和其它模型一起训练fine-tune。大家知道输入到bert中的数据需要一定的格式,如在单个句子的前后需要加入"[CLS]"和“[SEP]”,需要mask等。下面使用pad_sequences对句子长度进行截断以及padding填充,使每个输入句子的长度...
LSTM 是一种递归神经网络(RNN)的变体,专门设计用于处理序列数据。它通过使用门控机制来捕捉长期依赖关系,适用于处理时间序列和自然语言等序列数据。 LSTM 可以用于处理医学文本中的序列信息,例如病历、症状描述等。它有助于保留文本中的上下文信息,提高模型对长文本的理解能力。CRF 是一种用于标注序列数据的统计建模方法...
Advanced: Making Dynamic Decisions and the Bi-LSTM CRF 在实际应用中,一般使用第三方用pytorch实现的CRF模块pytorch-crf. 文档、github如下: https://pytorch-crf.readthedocs.io/en/stable/ GitHub - kmkurn/pytorch-crf: (Linear-chain) Conditional random field in PyTorch. 这里对pytorch-crf的实现做个简单...
关于bert+lstm+crf实体识别训练数据的构建 一.在实体识别中,bert+lstm+crf也是近来常用的方法。这里的bert可以充当固定的embedding层,也可以用来和其它模型一起训练fine-tune。大家知道输入到bert中的数据需要一定的格式,如在单个句子的前后需要加入"[CLS]"和“[SEP]”,需要mask等。下面使用pad_sequences对句子长度进...
本系统采用的深度学习模型为BERT+LSTM+CRF。BERT模型用于提取医疗文本的语义信息;LSTM模型用于捕捉文本中的长期依赖关系;CRF模型用于进行命名实体识别,提高标签之间的一致性和整体序列标注的准确性。4. 知识图谱 本系统构建的医疗知识图谱包括疾病、症状、药物等实体类型以及疾病-症状、药物-治疗等关系类型。知识图谱使用...
其中,BERT、Bi-LSTM和条件随机场(CRF)是常见的模型组合。1. BERT模型BERT(Bidirectional Encoder Representations from Transformers)是一种预训练的深度双向Transformer模型,能够学习文本的深层次表示。通过在大量无标签文本上预训练,BERT可以捕获文本中的上下文信息,这对于NER任务至关重要。2. Bi-LSTM模型Bi-LSTM(...
首先,考虑在BERT模型中直接使用序列标注方法。这包括基于BERT得到的token嵌入,通过softmax函数直接预测标签。这种方法简洁明了,但忽略了序列内部的依赖关系。CRF层的引入旨在解决这一问题。CRF是一种全局无向转移概率图,它能够更好地考虑词语前后的关系,从而在序列标注问题中构建更合理的全局概率转移模型...
关于bert+lstm+crf实体识别训练数据的构建 ⼀.在实体识别中,bert+lstm+crf也是近来常⽤的⽅法。这⾥的bert可以充当固定的embedding层,也可以⽤来和其它模型⼀起训练fine-tune。⼤家知道输⼊到bert中的数据需要⼀定的格式,如在单个句⼦的前后需要加⼊"[CLS]"和“[SEP]”,需要mask等。下⾯...
cnn vs rnn vs self-attentionRNN结构,双向LSTM,Transformer, BERT对比分析RNNRNN 按照时间步展开Bi-RNN 向前和向后的隐含层之间没有信息流。LSTM长短期记忆(Long short-term memory, LSTM)是一种特殊的RNN,主要是为了解决长序列训练过程中的梯度消失问题。LSTM...
(3)BiLSTM层通过双向LSTM计算输入隐藏信息; (4)Attention层对BiLSTM层输出的特征向量进行权重分配; (5)利用CRF层,使用Viterbi算法对BiLSTM层输出进行解码,求解最优路径,获取文本标签。 图1 BERT-BiLSTM-MHA-CRF模型框架 1.2 BERT模型 自然处理处理中,将文本信息转化为相应的词向量嵌入到模型中,是自然语言处理中的...