通过智慧问答的方式构建出以BERT+LSTM+CRF的深度学习识别模型,从而完成对医疗问句主体的识别,构建出数据集以及实现文本的训练。通过Django来进行web网页的开发,通过面向用户的网页端开发使用来满足用户医疗问答的需要。通过该系统设计一个强大的问答模块,能够接受用户输入的自然语言问题,并基于Aho-Corasick算法、贪心算法及...
关于bert+lstm+crf实体识别训练数据的构建 一.在实体识别中,bert+lstm+crf也是近来常用的方法。这里的bert可以充当固定的embedding层,也可以用来和其它模型一起训练fine-tune。大家知道输入到bert中的数据需要一定的格式,如在单个句子的前后需要加入"[CLS]"和“[SEP]”,需要mask等。下面使用pad_sequences对句子长度进...
通过智慧问答的方式构建出以BERT+LSTM+CRF的深度学习识别模型,从而完成对医疗问句主体的识别,构建出数据集以及实现文本的训练。通过Django来进行web网页的开发,通过面向用户的网页端开发使用来满足用户医疗问答的需要。通过该系统设计一个强大的问答模块,能够接受用户输入的自然语言问题,并基于Aho-Corasick算法、贪心算法及...
在初始化函数中,我们设置了词嵌入维度、隐藏层维度、词嵌入层、LSTM层和全连接层。在forward函数中,我们首先使用词嵌入层将输入的单词转换为嵌入向量,然后将嵌入向量传递给LSTM层。LSTM层的输出被展平并传递给全连接层,生成特征向量。最后,我们使用CRF层计算输出序列的损失。接下来,我们将定义训练函数和测试函数: def...
一.在实体识别中,bert+lstm+crf也是近来常用的方法。这里的bert可以充当固定的embedding层,也可以用来和其它模型一起训练fine-tune。大家知道输入到bert中的数据需要一定的格式,如在单个句子的前后需要加入"[CLS]"和“[SEP]”,需要mask等。下面使用pad_sequences对句子长度进行截断以及padding填充,使每个输入句子的长度...
图中BiLSTM的位置,可以替换成BERT或者BERT+BiLSTM,本质上都是把CRF的状态特征(发射分数)替换成深度特征提取器的输出。 为什么要这么做?说下我的思考: 与其说是在CRF的基础上引入LSTM/BERT来增强效果,不如说是在LSTM/BERT的基础上引入CRF来锦上添花。因为深度特征提取器尤其是BERT类的模型的拟合效果已经很强大了...
本系统采用的深度学习模型为BERT+LSTM+CRF。BERT模型用于提取医疗文本的语义信息;LSTM模型用于捕捉文本中的长期依赖关系;CRF模型用于进行命名实体识别,提高标签之间的一致性和整体序列标注的准确性。4. 知识图谱 本系统构建的医疗知识图谱包括疾病、症状、药物等实体类型以及疾病-症状、药物-治疗等关系类型。知识图谱使用...
关于bert+lstm+crf实体识别训练数据的构建 一.在实体识别中,bert+lstm+crf也是近来常用的方法。这里的bert可以充当固定的embedding层,也可以用来和其它模型一起训练fine-tune。大家知道输入到bert中的数据需要一定的格式,如在单个句子的前后需要加入"[CLS]"和“[SEP]”,需要mask等。下面使用pad_sequences对句子长度...
其中,BERT、Bi-LSTM和条件随机场(CRF)是常见的模型组合。1. BERT模型BERT(Bidirectional Encoder Representations from Transformers)是一种预训练的深度双向Transformer模型,能够学习文本的深层次表示。通过在大量无标签文本上预训练,BERT可以捕获文本中的上下文信息,这对于NER任务至关重要。2. Bi-LSTM模型Bi-LSTM(...
self.crf = CRF(num_tags) def forward(self, input_ids, attention_mask, labels=None): outputs = self.bert(input_ids, attention_mask=attention_mask) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) lstm_output, _ = self.bilstm(sequence_output) ...