根据上面三个可知,如果我们要加上 TextCNN 模型,可以选择last_hidden_state和hidden_states,这两个不同的区别就是 last_hidden_state 是最后一层的输出,而hidden_states 是每一层的输出。因此对于 bert 模型的输出我们就有两种选择。 模型选择1: 图3 模型结构图1 我们以最后一层的模型输出的隐藏状态作为 TextCN...
CNN 在计算机识别领域中应用广泛,其捕捉局部特征的能力非常强,为分析和利用图像数据的研究者提供了极大的帮助。TextCNN 是2014年 Kim 在 EMNLP 上提出将 CNN 应用于 NLP 的文本分类任务中。 从直观上理解,TextCNN 通过一维卷积来获取句子中 n-gram 的特征表示。TextCNN 对文本浅层特征的抽取能力很强,在短文本领...
CNN是一种神经网络模型,它的基本结构是由多个卷积层和池化层组成的。卷积层可以提取图像中的局部特征,而池化层则可以减少特征的数量,提高计算效率。CNN的这种结构使得它非常适合用于计算机视觉任务,如图像分类、物体检测等。与RNN相比,CNN更擅长处理图像数据,因为它可以自动学习图像中的局部特征,而不需要人工设计特征提取...
在论文中,作者提出了采用BERT(Bidirectional Encoder Representations from Transformers)这一网络结构来实现模型的双向编码学习能力。同时,为了使得模型能够有效的学习到双向编码的能力,BERT在训练过程中使用了基于掩盖的语言模型(Masked Language Model, MLM),即随机对输入序列中的某些位置进行遮蔽,然后通过模型来对其进行预测。
图一:bert分类模型结构 Bert文本分类模型常见做法为将bert最后一层输出的第一个token位置(CLS位置)当作句子的表示,后接全连接层进行分类。 图二:TextCNN分类模型结构 在Bert问世前,TextCNN在文本分类模型中占据了举足轻重的位置,源于Cnn网络可以很有效的捕捉文本序列中的n-gram信息,而分类任务从本质上讲是捕捉n-gram...
经典论文《可视化与理解CNN》(Visualizing and Understanding Convolutional Networks)解释了在图像领域中CNN...
DPCNN:Deep Pyramid CNN,同样是非常深的神经网络,通过池化操作使网络的每层神经元个数不断减半,因此,整个神经网络看起来像是一个金字塔结构 上述对比方法与BERT模型在三个数据集上的分类准确率如下表所示(对比方法的数据来自于论文:A New method ofRegion Embedding for Text Classification和Deep PyramidConvolutional ...
在上一章中,我们研究了注意力机制——现代深度学习模型中无处不在的方法。在这篇文章中,我们将介绍The Transformer——Google Brain团队在2017年提出的一种新的神经网络架构,该架构只使用了attention机制(+MLPs),不需要RNN、CNN等复杂的神经网络架构,并行度高。
BERT是两阶段模型,第⼀阶段双向语⾔模型预训练,这里注意要用双向⽽不是单向,第⼆阶段采用具体任务Fine-tuning或者做特征集成;特征抽取要用Transformer作为特征提取器⽽不是 RNN或者CNN;双向语⾔模型可以采取MASK的⽅法去做。 BERT的本质上也可以理解是通过在海量的语料的基础上运行自监督学习方法为单词学习...
CLDNN的卷积结构具体为: (1)CNN共使用两层卷积层,第一层的卷积核为(9,9),第二层的卷积核为(4,3),两层卷积层中包含1个池化核为3的池化层。由于卷积结构的结果数据量过大,CLDNN使用线性层将数据降维处理,将数据降维至每帧256个数据。 (2)LSTM每层包含832个单元,另有一个包含500个单元的Projection Layer作...