增强文本表示和提高新闻文本分类的效果,首先使用 BERT 预训练 模型对文本进行词嵌入映射,其次利用 BiLSTM-CNN 模型进一步提取文本上下文和局部关键特征,最后对新闻 文本进行分类;并在 THUCNews数据上进行对比实验,实验结果表明,BERT-BiLSTM-CNN 模型的文本分类效 果优于 Transformer,TextRNN,TextCNN 等深度学习模型. ...
相较于BERT-BiLSTM模型,BERT-Att-BiLSTM模型在准确率、召回率和F1值方面分别提升了1.21%、0.93%和1.07%。 通过比较BERT-Att-CNN和BERT-Att-BiLSTM,发现CNN确实有助于在词的水平上产生空间局部相关性,但对于推断诸如“环境不太好,但还行”这类代表矛盾观点的评论时,表现不尽如人意。相比之下,LSTM能够捕获全局特...
,gpt,bert)分类模型通过CNN,RNN,tranformer等做特征提取(特征的表达),然后分类的问题1.fastText2.TextCNN3.TextRNN...思路历程:1.利用知识工程建立专家系统进行分类通过添加特定规则做分类任务,费时费力,覆盖的范围和准确率都非常有限。2.人工特征工程+浅层分类模型文本预处理:在文本中提取关键词表示文本中文文本 ...
增强文本表示和提高新闻文本分类的效果,首先使用 BERT 预训练 模型对文本进行词嵌入映射,其次利用 BiLSTM-CNN 模型进一步提取文本上下文和局部关键特征,最后对新闻 文本进行分类;并在 THUCNews数据上进行对比实验,实验结果表明,BERT-BiLSTM-CNN 模型的文本分类效 果优于 Transformer,TextRNN,TextCNN 等深度学习模型. ...