实际上,BiLSTM用于为每个输入序列生成一个特征向量,然后将这些特征向量输入到CRF层,以便为序列中的每个元素分配一个标签。BiLSTM 和 CRF 结合在一起,使模型即可以像 CRF 一样考虑序列前后之间的关联性,又可以拥有 LSTM 的特征抽取及拟合能力。 2.BiLSTM+CRF模型的数学原理 假设我们有一个序列 ,其中 是第 个位...
于是作者在大规模无标注数据集上训练了双向LM,由BiLSTM的forward和bachward层拼接得到文本表征,用LM模型来帮助抽取更全面/通用的文本信息。在NER模型中第一层BiLSTM从NER标注数据中学习上下文信息,第二层BiLSTM的输入由第一层输出和LM模型的输出拼接得到,这样就可以结合小样本训练的文本表征和更加通用LM的文本表征。
在Bert-BiLSTM-CRF模型中,BiLSTM用于进一步处理BERT输出的向量序列。最后是CRF。CRF是一种条件随机场,能够识别序列中的结构模式。它通过计算给定输入序列的条件概率来预测标签序列。在Bert-BiLSTM-CRF模型中,CRF用于对BiLSTM输出的向量序列进行解码,生成最终的标签序列。现在,让我们来看看如何实现Bert-BiLSTM-CRF基线模...
BILSTM-CRF模型更加稳健,不仅可以考虑到输入的前后信息,还可以考虑到标签的前后信息。 BILSTM-CRF对embedding的初始化依赖性不强,不需要采用预训练的词向量也可以达到一个比较好的结果。 NCRF++由于引入字符级向量,因此,可以有效提升OOV的准确率,效果要比BILSTM-CRF更好一点。
综合两组模型对,将CRF学习率扩大100倍能很明显的提升模型性能,并且BERT-CRF-0.001模型性能是最好的,甚至略微好于BERT-Bi-LSTM-CRF-0.001,这充分验证了CRF所需要的的学习率要比BERT大,设置更大的学习率能够为模型带来性能提升。 参考文献 [1] 简明条件随机场CRF介绍(附带纯Keras实现) [2] BiLSTM上的CRF,用命...
框架很简单,就是bert+Bilstm-CRF,前面讲了bert就是用来产生词向量的,所以如果抛开这个原理,这个升级版本的NER模型就很简单了。 这里先给出代码链接。BERT是Google提出的基于tensorflow1.11.0的代码,里面用了高级API,所以这篇博客我主要在代码层面讲一下bert的应用。原理部分我也做了详细的介绍,请戳。
BERT Embedding+ BiLSTM + CRF 使用BERT预训练模型做embedding,可以将大量语义信息迁移过来。为了实现结构分层,Embedding层设置为不可变。 效果与示例 构造一个小样本数据集 为了展示BERT的惊人效果,我写了一份超级小的数据集: @香蕉#FOOD/很好吃 我喜欢@苹果#FOOD/ ...
BERT-BiLSTM-CRF模型是一种用于自然语言处理任务的序列标注模型。它结合了BERT(Bidirectional Encoder Representations from Transformers),BiLSTM(双向长短期记忆网络)和CRF(条件随机场)三个组件。 BERT是一种基于Transformer的预训练语言模型,能够提取文本的上下文表示。它通过在大规模语料库上进行无监督预训练,学习到了丰...