实际上,BiLSTM用于为每个输入序列生成一个特征向量,然后将这些特征向量输入到CRF层,以便为序列中的每个元素分配一个标签。BiLSTM 和 CRF 结合在一起,使模型即可以像 CRF 一样考虑序列前后之间的关联性,又可以拥有 LSTM 的特征抽取及拟合能力。 2.BiLSTM+CRF模型的数学原理 假设我们有一个序列 ,其中 是第 个位...
Bert-BiLSTM-CRF基线模型结合了BERT的上下文表示能力和BiLSTM-CRF的序列标注能力。具体来说,该模型分为三个部分:BERT预训练模型、BiLSTM网络和CRF解码器。 BERT预训练模型:BERT是一种基于Transformer的预训练语言模型,通过大规模语料库的无监督学习,能够理解文本中的上下文信息。在中文NER任务中,我们使用预训练的中文BE...
基线模型 Bert-Bilstm-CRF 来看下基准模型的实现,输入是wordPiece tokenizer得到的tokenid,进入Bert预训练模型抽取丰富的文本特征得到batch_size * max_seq_len * emb_size的输出向量,输出向量过Bi-LSTM从中提取实体识别所需的特征,得到batch_size * max_seq_len * (2*hidden_size)的向量,最终进入CRF层进行解码...
在Bert-BiLSTM-CRF模型中,BiLSTM用于进一步处理BERT输出的向量序列。最后是CRF。CRF是一种条件随机场,能够识别序列中的结构模式。它通过计算给定输入序列的条件概率来预测标签序列。在Bert-BiLSTM-CRF模型中,CRF用于对BiLSTM输出的向量序列进行解码,生成最终的标签序列。现在,让我们来看看如何实现Bert-BiLSTM-CRF基线模...
综合两组模型对,将CRF学习率扩大100倍能很明显的提升模型性能,并且BERT-CRF-0.001模型性能是最好的,甚至略微好于BERT-Bi-LSTM-CRF-0.001,这充分验证了CRF所需要的的学习率要比BERT大,设置更大的学习率能够为模型带来性能提升。 参考文献 [1] 简明条件随机场CRF介绍(附带纯Keras实现) [2] BiLSTM上的CRF,用命...
BERT-BiLSTM-CRF模型是一种用于自然语言处理任务的序列标注模型。它结合了BERT(Bidirectional Encoder Representations from Transformers),BiLSTM(双向长短期记忆网络)和CRF(条件随机场)三个组件。 BERT是一种基于Transformer的预训练语言模型,能够提取文本的上下文表示。它通过在大规模语料库上进行无监督预训练,学习到了丰...
三、模型 在这篇博客中,我总共使用了三种模型来训练,对比训练效果。分别是 BiLSTMBiLSTM + CRFBert + BiLSTM + CRF 1、BiLSTM 模型大致结构 只用BiLSTM来做NER的话,实际上就是多分类,既然是多分类,那么它的损失函数就可以用交叉熵来表示。模型构建及损失计算如下: ...
本文将采用BERT+BiLSTM+CRF模型进行命名实体识别(Named Entity Recognition 简称NER),即实体识别。命名实体识别,是指识别文本中具有特定意义的实体,主要包括人名、地名、机构名、专有名词等。 BERT(Bidirectional Encoder Representation from Transformers),即双向Transformer的Encoder。模型的创新点在预训练方法上,即用了Mas...