从上图中,我们可以得出结论,batch size越大: 训练损失减少的越慢。 最小验证损失越高。 每个时期训练所需的时间越少。 收敛到最小验证损失所需的 epoch 越多。 让我们一一了解这些。首先,在大批量训练中,训练损失下降得更慢,如红线(批量大小 256)和蓝...
当Batch Size 慢慢增大时,你思考的时间相对来讲会变少,但你每一次的遇到的路况不算多,因而你学习能力强,应对出现过的路况能较好应对,训练会一定程度提高 当Batch Size 很大时,你一开始一个大跨步就直接来到了一个很平坦的地方,你误以为这边就是山脚,因而卡在了局部最优处,当然如果你运气好,每次都是有坡度的情...
下表是比较了一下不同batch size的特点: 2 Learning rate对模型训练的影响 如下图7所示是一个convex的error surface,两个坐标轴代表不同的权值,黄色的叉号代表global optimization的权值参数。如果今天取\eta=10^{-2},其结果如左图所示,loss出现振荡;如果今天取\eta=10^{-7},其结果如右图所示,不再振荡了,...
总结下来:batch size过小,花费时间多,同时梯度震荡严重,不利于收敛;batch size过大,不同batch的梯度方向没有任何变化,容易陷入局部极小值。 (2)(存疑,只是突发奇想)如果硬件资源允许,想要追求训练速度使用超大batch,可以采用一次正向+多次反向的方法,避免...
在一定范围内,一般来说 Batch_Size 越大,其确定的下降方向越准,引起训练震荡越小。 盲目增大 Batch_Size 有何坏处? 内存利用率提高了,但是内存容量可能撑不住了。 跑完一次 epoch(全数据集)所需的迭代次数减少,要想达到相同的精度,其所花费的时间大大增加了,从而对参数的修正也就显得更加缓慢。
让我们通过一个简单的PyTorch程序来理解batch_size对训练时间的影响。下面是一个简单的示例,它构建了一个简单的神经网络,并对一个合成数据集进行训练。 # 导入PyTorch的相关模块importtorchimporttorch.nnasnnimporttorch.optimasoptimimporttimefromtorchvisionimportdatasets,transformsimportmatplotlib.pyplotasplt# 定义一个...
小 Batch Size 基准 我们从批大小为 128 的小基准开始。「训练时间」对应于在 CIFAR-10 上训练 MobileNetV3 的 10 个 epoch。推理时间意味着在测试集中的 10k 图像上评估模型。查看上表,让我们将批大小 128 作为参考点。似乎将批量大小减少一 (127) 或将批量大小增加一 (129) 确实会导致训练性能减慢。但...
深度学习batch训练的意义 batch size对训练的影响,一般来说,在合理的范围之内,越大的batchsize使下降方向越准确,震荡越小;batchsize如果过大,则可能会出现局部最优的情况。小的bathsize引入的随机性更大,难以达到收敛,极少数情况下可能会效果变好。Don’tdecaythele
首先来说说Batch_Size对收敛速度的影响。一般来说,增大Batch_Size,所带来的训练时的标准差并不是线性增长的,比如训练一个样本的标准差为σ,那么取Batch_Size=n所带来的标准差为σ/√n,而非σ/n。因此,如果采用多个训练样本来算梯度的话,其计算量是线性增长的,但标准差并不能线性降低。所以Batch_Size越大,其...