相关知识点: 排列组合与概率统计 概率 正态分布曲线的特点及曲线所表示的意义 正态分布曲线的特点 试题来源: 解析 随机变量,,,故答案为:,.根据数学期望和方程的性质可得E(X)2,D(X)=4,E(aX+b)=aE(X)+b,D(aX+b)=a2D(X).代入数据即可计算. 结果...
随机变量ax+b服从标准正态分布E(ax+b)=aE(x)+b=0-->E(x)=-b/aD(ax+b)=a^2Dx+0=1-->Dx=1/a^2又D(ax+b)=E(x-E(x))^2=E(x^2-2*x*E(x)+(E(x))^2)=E(x^2)-(E(x))^2-->1/a^2=E(x^2)-(b/a)^2-->E(x^2)=1/a^2+(b/a)^2相关...
如果你想问的是求Y=aX+b的期望和方差,且X服从正态分布,那么当X~N(μ,σ)时,E(X)=μ,D(X)=σ²E(Y)=aE(X)+b=aμ+b,D(Y)=a²E(X)=a²σ²
aX-bY服从正态分布,因为正态分布之间的线性加减,以及乘以一个常数,不会影响其正态分布的性质。如果X和Y独立,且各自的均值为μx和μy;那么,aX-bY均值为 aμx-bμy,方差为:(aσx)^2+(bσy)^2 。分析过程如下:X,Y服从正态分布,则X~N(μx,σx^2),Y~N(μy,σy^2);...
@文都考研x服从正态分布ax+b服从什么分布 文都考研 已知x服从正态分布时,ax+b也服从正态分布。具体地,如果x服从N(m, c2)。
设X服从N(m, c^2),即 知道m=E(X),c^2=D(X)。知道Y=aX+b 也服从正态分布。且由于E(Y)=E(aX+b)=am+b,D(Y)=D(aX+b)=(a^2)*(c^2)即 知道Y服从N(am+b, (a*c)^2 )。
肯定的 任一本概率论或概率统计书基本上都有这个结论的推导
正态分布函数的语法是NORMDIST(x,mean,standard_dev,cumulative)cumulative为一逻辑值,如果为0则是密度函数,如果为1则是累积分布函数。如果画正态分布图,则为0。
定理设随机变量X具有概率密度 , ,又设函数g(x)处处可导且恒有 ,或恒有 ,则y=g(X)是连续型随机变量,其概率密度为: 其中, 设随机变量 ,试证明X的线性函数Y=aX+b(a≠0)也服从正态分布。 证:X的概率密度为 由得: 由以上定理可得,Y=ax+b的概率密度为 即 即有...
知识点4正态分布(1)正态分布的定义如果对于任何实数a,b(ab),随机变量X满足P(aX≤b)=(x)dx,则称随机变量X服从正态分布,记为X~N(,a2).其2中Pu