int cmp = z.key.compareTo(tree.key); if (cmp < 0) { tree.left = remove(tree.left, z); // 删除节点后,若avl树失去平衡,直接返回null if (height(tree.right) - height(tree.left) == 2) { Node<T> r = tree.right; if (height(r.left) > height(r.right)) tree = rightLeftRotat...
AVLTree tree = new AVLTree(); int[] arr = new int[] { 60, 50, 40, 30, 20, 10 }; //依次添加进avl树 for (int i : arr) { tree.addNode(root, i); } //中序遍历 tree.inOrder(root); System.out.println(); //是否是BST System.out.println("is BST:" + tree.isBST()); ...
//右单旋private void rotateRight(TreeNode parent){TreeNode subL = parent.left;TreeNode subLR = subL.right;parent.left = subLR;if(subLR != null){//只有当subLR不为空时,才能修改其父亲节点subLR.parent = parent;}subL.right = parent;//在修改parent的父亲节点时,必须先记录其父亲节点,以便修...
// AVL树的节点(内部类)classAVLTreeNode<TextendsComparable<T>>{Telement;// 值int height;// 高度AVLTreeNode<T>left;// 左孩子AVLTreeNode<T>right;// 右孩子publicAVLTreeNode(Tkey,AVLTreeNode<T>left,AVLTreeNode<T>right){this.element=key;this.left=left;this.right=right;this.height=0;}}...
AVL树---java AVL树是高度平衡的二叉查找树 1.单旋转LL旋转 理解记忆:1.在不平衡的节点的左孩子的左孩子插入导致的不平衡,所以叫LL private AVLTreeNode<T> leftLeftRotation(AVLTreeNode<T> k2) { AVLTreeNode<T> k1; k1 = k2.left; k2.left = k1.right; k1...
public TreeNode parent;//父节点 public TreeNode(int val) { this.val = val;} } 实现插入功能 总体思路:1.按照平衡二叉树的比较方式去寻找到应该插入在的节点 2.插入完了修改一下bf(平衡因子)的值 3.判断是否平衡 3.1 bf = 0直接跳出循环即可 3.2 bf = 1 或 bf = -1就继续向上寻找 3.3 bf...
平衡二叉树(Balanced Binary Tree)又被称为AVL树(有别于AVL算法) 在AVL中任何节点的两个儿子子树的高度最大差别为1,所以它也被称为高度平衡树,n个结点的AVL树最大深度约1.44log2n。查找、插入和删除在平均和最坏情况下都是O(logn)。增加和删除可能需要通过一次或多次树旋转来重新平衡这个树。这个方案很好的解...
完整的AVL树Java代码如下: packagecom.huawei.machinelearning.data.structure; /** * AVL Tree implementation * Created by d00454735 on 2018/10/26. */ publicclassAVLTree{ AVLNoderoot;// 根节点 // 右旋转 privateAVLNoderightRotate(AVLNoderootNode){ ...
用红黑树管理timer等Java的TreeMap实现B和B+主要用在文件系统以及数据库中做索引等,比如Mysql:B-Tree...
AVL tree is a self-balancing binary search tree in which each node maintains an extra information called as balance factor whose value is either -1, 0 or +1. In this tutorial, you will understand the working of various operations of an avl-black tree wit