AUC(Area Under Curve,曲线下面积):即ROC下面的面积,其可以用于衡量这个分类器的优劣。面积等于0.5随机猜,AUC越大,分类器越好。 PRC(Precision Recall Curve,准确召回率曲线),相关性评价: 数据库里有500条记录,其中50个是相关的(正样本),你通过一个检索,返回了75个你认为相关,其中只有45个是真正相关的;那么在...
题外话:对很多机器学习初学者来说,本来二分类问题的模型评估其实很简单,无非就是预测结果对了,或者预测结果错了,但是围绕这个结果衍生出来了很多指标(准确率、精确率、查准率、查全率、真阳性率、假阳性率、ROC、AUC、PRC、KS、F1……),加上绕来绕去的概念,很多人无法很快对其进行快速理解,本文尝试以图文结合的方式...
AUC值越大,表示模型性能越好。具体来说,AUC值接近1表示模型能够很好地将正例与负例区分开来;AUC值为0.5则表示模型性能与随机猜测无异;AUC值小于0.5则表明模型性能甚至不如随机猜测。 二、PRC曲线:精确率与召回率的权衡 1. PRC曲线的定义 PRC曲线,即Precision-Recall Curve(精确率-召回率曲线),是另一种用于评估...
在 sklearn 中,我们可以使用 sklearn.metrics.roc_auc_score 和 sklearn.metrics.average_precision_score。比较 ROC-AUC 和 AUPRC 让我们直接跳到结果,然后讨论实验。在图 3 中(下图),我们看到两个强大的模型(高 AUC),它们的 AUC 分数差异很小,橙色模型略好一些。图 3:两个看似相似的模型,其中橙...
Recall越大、Precision越大表明模型效果越好,此时PRC曲线靠近右上角,AUC值也越大。与ROC-PRC不同的是,Precision受样本不平衡的影响,相应的PRC也会因此形状变化。因此,在样本数据量比较大时,ROC会比较稳定,一般选择ROC-AUC来评价模型是较为合适的。而当阈值确定时,Precision、Recall、F1-score都可以用来评价模型...
PRC曲线,即精确度召回率曲线(Precision-Recall Curve),是以精确度为纵轴,召回率为横轴绘制的曲线。精确度(Precision)又称查准率,是预测为正例的样本中真正为正例的比率。PRC曲线下的面积(PR-AUC)同样用于衡量分类器在不同阈值下的预测性能。 与ROC曲线相比,PRC曲线更关注正例的预测准确性。在主要关心正例的预测准...
因此,对于同一模型,PRC和ROC曲线都可以说明一定的问题,而且二者有一定的相关性,如果想评测模型效果,也可以把两条曲线都画出来综合评价。 对于有监督的二分类问题,在正负样本都足够的情况下,可以直接用ROC曲线、AUC、KS评价模型效果。在确定阈值过程中,可以根据Precision、Recall或者F1来评价模型的分类效果。
append(int(a)) def calAUC(prob,labels): f = list(zip(prob,labels)) rank = [values2 for values1,values2 in sorted(f,key=lambda x:x[0])] rankList = [i+1 for i in range(len(rank)) if rank[i]==1] posNum = 0 negNum = 0 for i in range(len(labels)): if(labels[i]=...
PRC曲线(Precision-Recall Curve)直观呈现精确率与查全率的折衷,是评估模型在不同召回率下精确度的指标。AUC面积(Area Under Curve)表示ROC曲线下的面积,数值越大,模型性能越好。Gini系数(Gini coefficient)评估模型预测值与实际结果的排序一致性,其值在0到1之间,值越大表示排序效果越好。F1分数...
依据曲线内容计算并且存储 AUC/PRC/KS 具体后续还有详细调用关系综述。 0x03 批处理 3.1 EvalBinaryClassBatchOp EvalBinaryClassBatchOp是二分类评估的实现,功能是计算二分类的评估指标(evaluation metrics)。 输入有两种: label column and predResult column label column and predDetail column。如果有predDetail,则...