二、PRC曲线:精确率与召回率的权衡 1. PRC曲线的定义 PRC曲线,即Precision-Recall Curve(精确率-召回率曲线),是另一种用于评估分类模型性能的图形化工具。它通过绘制召回率(Recall)与精确率(Precision)之间的关系来展示模型在区分正例时的性能。 2. 如何绘制PRC曲线 绘制PRC曲线的基本步骤如下: 计算精确率和召回...
PRC曲线,即精确度召回率曲线(Precision-Recall Curve),是以精确度为纵轴,召回率为横轴绘制的曲线。精确度(Precision)又称查准率,是预测为正例的样本中真正为正例的比率。PRC曲线下的面积(PR-AUC)同样用于衡量分类器在不同阈值下的预测性能。 与ROC曲线相比,PRC曲线更关注正例的预测准确性。在主要关心正例的预测准...
AUC Area Under ROC Curve,ROC曲线下的面积: 敏感性 敏感性或者灵敏度(Sensitivity,也称为真阳性率)是指实际为阳性的样本中,判断为阳性的比例(例如真正有生病的人中,被医院判断为有生病者的比例),计算方式是真阳性除以真阳性+假阴性(实际为阳性,但判断为阴性)的比值(能将实际患病的病例正确地判断为患病的能力,...
PRC曲线(Precision-Recall Curve) AUC面积 (Area Under Curve) Gini系数 (Gini coefficient ) F1 上面我们介绍了精确度和召回率两个概念,但在实际建模过程中,这两个指标往往是此消彼长的,所以想要找到二者之间的一个平衡点,我们就需要一个新的指标:F1分数。F1分数同时考虑了查准率和查全率,让二者同时达到最高,取...
Area Under ROC Curve,ROC曲线下的面积: 敏感性 敏感性或者灵敏度(Sensitivity,也称为真阳性率)是指实际为阳性的样本中,判断为阳性的比例(例如真正有生病的人中,被医院判断为有生病者的比例),计算方式是真阳性除以真阳性+假阴性(实际为阳性,但判断为阴性)的比值(能将实际患病的病例正确地判断为患病的能力,即患...
Area Under ROC Curve,ROC曲线下的面积: 敏感性 敏感性或者灵敏度(Sensitivity,也称为真阳性率)是指实际为阳性的样本中,判断为阳性的比例(例如真正有生病的人中,被医院判断为有生病者的比例),计算方式是真阳性除以真阳性+假阴性(实际为阳性,但判断为阴性)的比值(能将实际患病的病例正确地判断为患病的能力,即患...
Area Under ROC Curve,ROC曲线下的面积: 敏感性 敏感性或者灵敏度(Sensitivity,也称为真阳性率)是指实际为阳性的样本中,判断为阳性的比例(例如真正有生病的人中,被医院判断为有生病者的比例),计算方式是真阳性除以真阳性+假阴性(实际为阳性,但判断为阴性)的比值(能将实际患病的病例正确地判断为患病的能力,即患...
上图是PRC曲线样例图,其中实线代表模型A的PRC曲线,虚线代表模型B的PRC曲线。原点附近代表当阈值最大时模型的精准率和召回率 (阈值越大,鉴定出的样品越真,能鉴定出的样品越少)。 模型1 (Curve 1)的AUC值为0.813, 模型2 (Curve 2)的AUC值为0.875, 从AUC值角度看模型2更优一点。但是右侧的precision-recall曲线...
AUC(Area Under the ROC Curve)是评估二分类模型性能的重要指标,通过计算ROC曲线下面积衡量模型对正负样本的排序
上图是PRC曲线样例图,其中实线代表模型A的PRC曲线,虚线代表模型B的PRC曲线。原点附近代表当阈值最大时模型的精准率和召回率 (阈值越大,鉴定出的样品越真,能鉴定出的样品越少)。 模型1 (Curve 1)的AUC值为0.813, 模型2 (Curve 2)的AUC值为0.875, 从AUC值角度看模型2更优一点。但是右侧的precision-recall曲线...