"pipeline_parallel_config": "enable_delay_scale_loss enable_sharding_comm_overlap enable_release_grads ", "tensor_parallel_config": "enable_delay_scale_loss enable_mp_async_allreduce enable_mp_skip_c_identity enable_mp_fused_linear_param_grad_add", "tensor_parallel_config": "enable_delay_scal...
Model Input Dumps No response 🐛 Describe the bug I'm simply change a little bit of the api_server.py to serve with multiple prompts and usingasyncio.gatherto wait all responses to be ready. the log shows that all requests can successfully finishes, but the response can't be returned fr...
🐛 Describe the bug #init model weights model.init_weights() #parallelize the first embedding and the last linear out projection model = parallelize_module( model, tp_mesh, { "tok_embeddings": RowwiseParallel( # **Here's the problem** inp...
engine = AsyncLLMEngine.from_engine_args( AsyncEngineArgs(model="google/gemma-2b", tensor_parallel_size=1, gpu_memory_utilization=0.2, max_model_len=1024, dtype="bfloat16") ) async def run_query(query: str): params = SamplingParams( top_k=10, temperature=0.01, repetition_penalty=1.10, ...
(s): 2 Vendor ID: AuthenticAMD CPU family: 25 Model: 1 Model name: AMD EPYC 7543 32-Core Processor Stepping: 1 Frequency boost: enabled CPU MHz: 1500.000 CPU max MHz: 3737.8899 CPU min MHz: 1500.0000 BogoMIPS: 5599.97 Virtualization: AMD-V L1d cache: 2 MiB L1i cache: 2 MiB L2 ...
tensor_parallel_size=1, pipeline_parallel_size=1, disable_custom_all_reduce=False, quantization=None, enforce_eager=False, kv_cache_dtype=auto, quantization_param_path=None, device_config=cuda, decoding_config=DecodingConfig(guided_decoding_backend='outlines'), observability_config=ObservabilityConfig(...
By use case DevSecOps DevOps CI/CD View all use cases By industry Healthcare Financial services Manufacturing Government View all industries View all solutions Resources Topics AI DevOps Security Software Development View all Explore Learning Pathways White papers, E...
Description I have some confusion about the context. execute function. According to the TensorRT Python API document, there are execute and execute_async. However, according to here . | Inference time should be nearly identical when exec...
nohup python -m vllm.entrypoints.openai.api_server \ --host $HOST \ --port $PORT \ --model $MODEL_PATH \ --tensor_parallel_size $TENSOR_PARALLEL_SIZE \ --trust_remote_code \ --max-num-seqs $MAX_NUM_SEQS \ --distributed-executor-backend $DISTRIBUTED_EXECUTOR_BACKEND \ --served-...
cmake csrc docs examples rocm_patch tests vllm attention core distributed engine output_processor __init__.py arg_utils.py async_llm_engine.py llm_engine.py metrics.py entrypoints executor logging lora model_executor multimodal spec_decode ...