大一高数问题(等价无穷小)谁知道arcsinX、arccosX、arctanX、arccotX的等价无穷小分别是什么? 答案 x→0时,sinx~x,tanx~x,所以arcsinx~x,arctanx~x(x→0)又arcsinx+arccosx=π/2,arctanx+arccotx=π/2相关推荐 1大一高数问题(等价无穷小)谁知道arcsinX、arccosX、arctanX、arccotX的等价无穷小分别...
谁知道arcsinX、arccosX、arctanX、arccotX的等价无穷小分别是什么? 扫码下载作业帮搜索答疑一搜即得 答案解析 查看更多优质解析解答一 举报 x→0时,sinx~x,tanx~x,所以arcsinx~x,arctanx~x(x→0)又arcsinx+arccosx=π/2,arctanx+arccotx=π/2 解析看不懂?免费查看同类题视频解析查看解答...
等价无穷小替换公式如下:1、sinx~x 2、tanx~x 3、arcsinx~x 4、arctanx~x 5、1-cosx~(1/2)*(x^2)~secx-1 等价无穷小是无穷小之间的一种关系,指的是在同一自变量的趋向过程中,若两个无穷小之比的极限为1,则称这两个无穷小是等价的。
当x→0时,sinx~x tanx~x arcsinx~x arctanx~x 1-cosx~(1/2)*(x^2)~secx-1 (a^x)-1~x*lna ((a^x-1)/x~lna)(e^x)-1~x ln(1+x)~x (1+Bx)^a-1~aBx [(1+x)^1/n]-1~(1/n)*x loga(1+x)~x/lna (1+x)^a-1~ax(a≠0)值得注意的是,等价无穷...
等价无穷小的替换公式如下:当x趋近于0时:e^x-1~x; In(x+1)~x;sinx~x; arcsinx ~x; tanx ~x; arctanx ~x;1-cosx ~ (x^2)/2;tanx-sinx ~ (x^3)/2;(1+ - okkk于20241114发布在抖音,已经收获了127个喜欢,来抖音,记录美好生活!
常用的等价无穷小替换很多,比如,当x→0时,sinx~x;tanx~x;arcsinx~x;arctanx~x;1-cosx~(1/2)*(x^2);(a^x)-1~x*lna ((a^x-1)/x~lna);(e^x)-1~x;ln(1+x)~x;(1+Bx)^a-1~aBx;loga(1+x)~x/lna。首先,我们要知道什么是无穷小。等价无穷小是无穷小之间的一种关系...
等价无穷小替换公式如下:1、sinx~x 2、tanx~x 3、arcsinx~x 4、arctanx~x 5、1-cosx~(1/2)*(x^2)~secx-1 6、(a^x)-1~x*lna ((a^x-1)/x~lna)7、(e^x)-1~x 8、ln(1+x)~x 9、(1+Bx)^a-1~aBx 10、[(1+x)^1/n]-1~(1/n)*x 11、loga(1+x)~x...
Loga(1+x) ~ x/lna(a>0,a不等于1) 常见:ln(1+x) ~ x 幂函数 (1+bx)^a - 1 ~ abx 常见:(1+x)^(1/n) -1~ x/n 指数函数 a^x - 1 ~ xlna (a>0,a不等于1) 常见:e^x - 1 ~ x 极限高数整理等价无穷小 分享至 投诉或建议...
给一些常用的等价无穷小量给一些常用的等价无穷小小量,例如:sinX~X (X→0);arctanX~X(X→0)等. 相关知识点: 试题来源: 解析当X→0时:(1)x~sinx~tanx~arcsinx~arctanx~ln(1 x)~e^x-1;(2)1-cosx~x^2/2;(3)(1 x)^a-1~ax(a≠0);...
解答一 举报 x→0时,sinx~x,tanx~x,所以arcsinx~x,arctanx~x(x→0)又arcsinx+arccosx=π/2,arctanx+arccotx=π/2 解析看不懂?免费查看同类题视频解析查看解答 相似问题 大一高数,关于等价无穷小的替换 关于高数的等价无穷小 高数 等价无穷小的问题...