由an+1=2Sn+2,得a2=2S1+2=2a1+2,a3=2S2+2=2(a1+a2)+2,即\((array)la_1q=2a_1+2a_1q^2=2(a_1+a_1q)+2(array).,解得\((array)la_1=2 q=3(array).,所以a_4=a_1q^3=54.故答案为:54. 由题意对所给的递推关系式进行赋值,得到关于首项、公比的方程组,求解方程组确定...
即an+1-an=1或an+1+an=1 若an+1-an=1 即数列{an}为等差数列,公差d=1. 若an+1+an=1 ∵当n=1时,2S1=a12+1-4, ∴2a1=a12-3, 解得a1=-1(舍)或a1=3, 当a1=3时,a2=1-a1=1-3=-2不满足条件. (2)∵2Sn=an2+n-4, ∴当n=1时,2a1=a12+1-4, 即a12-2a1-3=0, 解得a...
an,1,2sn成等差数列则2Sn+an=2=>故an=2(1-Sn)或Sn=1-an/2当n=1时,a1=2(1-a1)∴a1=2/3当n≥2时an=Sn-S(n-1)=1-an/2-1+a(n-1)/23an/2=a(n-1)/2即an/a(n-1)=1/3所以{an}为公比是1/3的等比数列an=a1*(1/3)^(n-1)=(2/3)(1/3)^(n-1)=2(1/3)...
1 2+ 1 4× 1 3(1− 1 3n−1) 1− 1 3 (I)由an+1=2Sn +2(n∈N*)可得an=2sn-1+2(n≥2),两式相减可得an+1=3an(n≥2),结合已知等比数列的条件可得a2=3a1,可求a1,从而可求通项(II)由(I)知 dn= an+1−an n+1= 4×3n−1 n+1,利用错位相减可求数列的和 本题考点:数列...
(1)由2Sn=an2+an.①得2Sn-1=an-12+an-1.②①-②,得:2an=an2+an?an?12?an?1,∴an+an?1=an2?an?12,∴an-an-1=1,∴{an}是公差为1的等差数列,由2S1=a12+a1,得a1=1,∴an=1+(n-1)×1=n.(2)bn=2anlog 1 22an=-n?2n,...
【题目】在①Sn+1=2Sn+2,②an+1-an=2n,③Sn=an+1-2这三个条件中任选一个,补充在下面的问题中,并解答已知数列{an}的前n项和为S,a1=2,且
a1=1 2Sn=an+1/an 求通项公式 答案 2Sn=an+1/an ,an=Sn-Sn-1,所以2Sn=(Sn-Sn-1+1)\(Sn-Sn-1),整理Sn+Sn-1=1\(Sn-Sn-1),即Sn*Sn-Sn-1*Sn-1=1,{Sn平方}为等差数列,所以(Sn)^2=n,即Sn=√n,故an=√n-√(n-1).相关
n-1)+1=2s(n-1)+2所以 an-a(n-1)=2anan=-a(n-1)所以 {an}=-1,1,-1,1,-1,1...所以dn=2/(n+1)tn=(2+3+4+5+6+...+n)/2当n=1时,a1=-1,当n>=2时,2sn=an-12sn-1=an-1 -12(sn-sn-1)=an-an-12an=an-an-1an=-an-1所以q=-1所以数列是...
(1)n=1时,a1=1.∵2Sn=3an-1,∴2Sn+1=3an+1-1,∴an+1=3an,∴an=3n-1.(2)∵bn=n⋅3n-1,∴Tn=1⋅30+2⋅31+3⋅32+…+(n-1)⋅3n-2+n⋅3n-1,3 Tn=1⋅31+2⋅32+3⋅33+…+(n-1)⋅3n-1+n⋅3n,两式相减可得-2Tn=1+31+32+…+3n-1-n⋅3n,∴Tn= 2n-1...
分析:(1)利用n=1时,a1=S1,当n≥2时,an=Sn-Sn-1即可得出; (2)利用“错位相减法”,等比数列的前n项和公式即可得出. 解答:解:(1)n=1时,a1=1. ∵2Sn=3an-1,∴2Sn+1=3an+1-1, ∴an+1=3an, ∴an=3n-1. (2)∵bn=n?3n-1,