Alpha Shape算法是一种用于提取二维或三维点集轮廓的几何算法。它通过一个参数alpha(或称为滚球半径)来控制轮廓的精细程度,从而生成一个由点集中的点连接而成的形状,该形状能够较好地表示原始点集的轮廓特征。与凸包算法不同,Alpha Shape算法能够处理凹形轮廓,并且轮廓不一定是凸的或连通的。
PCL实现的大致流程为:使用Lifting Map算法计算点云的Delaunay三角网;确定Alpha Complexes,计算Delaunay三角网中的四面体/三角形的外接球/圆半径r,保留r<α的四面体/三角形;确定alpha shape,遍历Alpha Complexes中所有单纯形(四面体/三角形)的岭(三角形/边),若他们相邻的岭中有不属于Alpha Complexes的,则为边界单纯形。
二、算法原理 2.1 Delaunay三角剖分 在介绍Alpha_shape算法之前,我们需要了解一下Delaunay三角剖分。Delaunay三角剖分是对给定的点云进行连接构成的三角形网络,满足以下性质:任意一个三角形的外接圆内不包含其他点。Delaunay三角剖分的性质决定了其在构建Alpha_shape时的重要性。 2.2 Alpha_shape构建 Alpha_shape通过调整...
AlphaShape算法是一种基于Delaunay三角剖分的几何形状生成方法。通过调整alpha参数,可以得到不同形状的边界。当alpha参数为0时,生成的边界为凸包;当alpha参数为正值时,生成的边界为非凸包。 AlphaShape算法原理 AlphaShape算法基于Delaunay三角剖分,其原理如下: 1. 根据输入的点集,通过Delaunay三角剖分生成三角网格。 2....
一、算法原理1、原理概述假设点集中半径为 α 的圆由点集内任意两点 P_1(x_1, y_1) 、 P_2(x_2,y_2) 唯一确定,若圆内无其他点,则 P_1 、 P_2 为边界点,线段 P_1P_2 为边界线段。如图所示,并可以得到过这两…
Alpha-shape 算法的基本原理如下: Alpha-shape 算法通常用于点云轮廓提取或三维重建,一般来说阈值a越小,结果越精确。近年来该方法逐渐被应用于不规则点云体积计算,有研究人员提出了一种结合点云切片与 Alpha-shape 算法的不规则点云体积计算,并在树冠体积...
在分析二维点集边界提取时,我们基于α形状算法进行探讨。该算法原理基于一个特定的半径α,对于点集内的任意两点,我们构造一个半径为α的圆,如果这个圆内无其他点,那么这两点视为边界点,连接这两点的线段为边界线段。通过这种方式,我们可以识别出点集的边界。在应用α形状算法时,我们需要确定圆心位置...
一、原理 AlphaShape算法的基本思想是通过控制一个参数alpha来确定凸壳的形状。当alpha取不同的值时,可以得到不同形状的凸壳。具体来说,当alpha取较小值时,凸壳的形状会更接近于原始点云数据,而当alpha取较大值时,凸壳的形状会变得更加平滑。 在AlphaShape算法中,首先需要进行Delaunay三角剖分。Delaunay三角剖分是一...
Alpha shape的实现通常通过三角剖分算法来实现。一种常用的三角剖分算法是Delaunay三角剖分。Delaunay三角剖分是一种将点集分割成不相交的三角形的方法,它满足一些优良性质,例如:每个三角形的外接圆不包含其他点。通过对点云进行Delaunay三角剖分,并根据Alpha参数进行筛选,就可以得到Alpha shape。 Alpha shape在许多领域...
51CTO博客已为您找到关于Alpha Shape算法 java实现包的相关内容,包含IT学习相关文档代码介绍、相关教程视频课程,以及Alpha Shape算法 java实现包问答内容。更多Alpha Shape算法 java实现包相关解答可以来51CTO博客参与分享和学习,帮助广大IT技术人实现成长和进步。