已知数列{an}为等差数列.公差d≠0.{an}的部分项组成下列数列:ak1.ak2.-.akn.恰为等比数列.其中k1=1.k2=5.k3=17.求k1+k2+k3+-+kn.
而根据等比数列项的公式,akn=ak1*q^(n-1)=a*3^(n-1)因此kn=1+(akn-a1)/d (1表示从a从a1算起,后面表示加了几次d)=1+((2d)*(3^(n-1))-2d)/d (用2d代换a,消去变量)=(2*3^(n-1))-1 (化简得kn的通项公式)那么kn已经求出来了。【END】后面求和就按照...
等差数列{a}的公差d≠0,它的部分项依次组成的数列Ak1,Ak2,…Akn成等比数列,其中k1=1,k2=5,k3=17.设kn=f(n),求f(n)的解析式.
a(kn)=ak1·3^(n-1) = a1 ·3^(n-1) = 2d·3^(n-1) …… ① 又∵在等差数列{an}中 a(kn)=a1 + (kn - 1)d = 2d + (kn - 1)d = (kn + 1)d …… ② ∴由①②,得:2d·3^(n-1) = (kn + 1)d ∴kn = 2·3^(n-1) - 1 ∴ nkn = 2n·3^...
等差数列{an}中,公差d≠0,已知数列ak1,ak2,ak3,…,akn,……是等比数列,其中k1=1,k2=7,k3=25.(1)求数列ak1,ak2,ak
若规定E={a1,a2…a10}的子集{ak1,ak2…,akn}为E的第k个子集,其中k=2k1-1+2k2-1+2k3-1+…+2kn-1.则(1){a1,a3}是E的第 ___ ___个子集;(2)E的第211个子集是 ___ ___. A. Buying the latest books. B. Getting materials ready. C. Handing out program materials. D. ...
若规定E={a1,a2…a10}的子集{ak1,ak2…akn}(1≤n≤10)为E的k级子集,其中k=2k1-1+2k2-1+…+2kn-1,那么集合{a1,a2,a5,a7,a8}将是E的M级子集,则M为( ) A. 23 B. 18 C. 522 D. 211 答案 D【分析】根据题意,由E的k级子集的定义,若集合{a1,a2,a5,a7,a8}将是E的M级子集,...
(a1+4d)^2=a1*(a1+16d)a1^2+8a1d+16d^2=a1^2+16a1d 16d^2=8a1d 公差不为零 a1=2d an=(n+1)d ak1=a1=2d ak2=a5=6d ak3=a17=18d 公比q=3 akn=2d*3^(n-1)=(kn+1)d kn=2*3^(n-1)-1 k1+k2+k3……kn=2[3^0+3^1+3^2+……+3^(n-1)]-...
已知{an}为等差数列,公差d≠0,{an}的部分项ak1,ak2,…,akn恰为等比数列,若k1=1,k2=5,k3=17,(1)求kn;(2)求k1+2k2+3k3+…+nkn.
关于线性代数的问题: 就是最后一步,Ak1+Ak2+...+Akn=[(-1)^(n-1)*n!]/k,为什么是除以k啊,解释一下!!非常感谢!相关知识点: 试题来源: 解析 因为相当于计算第k列的代数余子式之和,计算的时间要把右边的行列式第k列全换成1,其中非零元素1/k换成1,连乘后少了一个1/k,不能构成阶乘,...