对于诺贝尔物理学奖和化学奖显示出Science与AI的关系,孙伟杰认为物理学奖更像是Science for AI,化学奖则更多体现了AI for Science。从两个奖项的可预测性来讲,物理学奖更让人意外。团队推测,这可能与过去几年来人工神经网络在物理学领域陆续发挥了重要作用有关,例如相关的数据处理、新仪器设备研发以及新材料发现...
现在我们能够预测蛋白质结构并设计自己的蛋白质,这为人类带来了最大的福祉。 继昨天诺贝尔物理奖颁发给为AI基础理论做出贡献的霍普菲尔德和辛顿之后,化学奖颁发给用AI设计和预测蛋白质结构的贝克、哈萨比斯和江珀。物理奖是Science for AI,而化学奖则是AI for Science,它们将引领科学前沿。 下面,我们详细介绍下这次诺...
对于诺贝尔物理学奖和化学奖显示出Science与AI的关系,孙伟杰认为物理学奖更像是Science for AI,化学奖则更多体现了AI for Science。从两个奖项的可预测性来讲,物理学奖更让人意外。团队推测,这可能与过去几年来人工神经网络在物理学领域陆续发挥了重要作用有关,例如相关的数据处理、新仪器设备研发以及新材料发现等等。
对于诺贝尔物理学奖和化学奖显示出Science与AI的关系,孙伟杰认为物理学奖更像是Science for AI,化学奖则更多体现了AI for Science。从两个奖项的可预测性来讲,物理学奖更让人意外。团队推测,这可能与过去几年来人工神经网络在物理学领域陆续发挥了重要作用有关,例如相关的数据处理、新仪器设备研发以及新材料发现等等。
AI特别擅长解决高维的数学问题。就像鄂维南院士2022年5月在《再谈AI for Science》报告中提到的,解决高维的数学问题,恰恰是深度学习或者说AI擅长的,深度神经网络对高维函数提供了有效的逼近方法。因为当利用神经网络逼近函数时,模型需要的参数和维度无关。
2024 年诺贝尔物理奖与化学奖都颁给“AI for Science”相关领域,这一重大事件无疑为该领域的蓬勃发展注入了强劲动力。在科学研究的新范式——“AI for Science”时代,基于数据驱动的机器学习力场(ML-FFs)成功化解了第一性原理电子结...
对于诺贝尔物理学奖和化学奖显示出Science与AI的关系,孙伟杰认为物理学奖更像是Science for AI,化学奖则更多体现了AI for Science。从两个奖项的可预测性来讲,物理学奖更让人意外。团队推测,这可能与过去几年来人工神经网络在物理学领域陆续发挥了重要作用有关,例如相关的数据处理、新仪器设备研发以及新材料发现等等...
对于诺贝尔物理学奖和化学奖显示出Science与AI的关系,孙伟杰认为物理学奖更像是Science for AI,化学奖则更多体现了AI for Science。从两个奖项的可预测性来讲,物理学奖更让人意外。团队推测,这可能与过去几年来人工神经网络在物理学领域陆续发挥了重要作用有关,例如相关的数据处理、新仪器设备研发以及新材料发现等等...
在AI与科学研究的交汇点上,“Science for AI”和“AI for Science”构成了驱动科学进步的“双螺旋引擎”。这两个概念不仅代表了科学与技术之间的相互作用,也定义了一个全新的科学研究范式。Science for AI指的是利用物理学等基础科学的原理和方法来启发和改进AI技术。如前文所述,物理学中的热扩散原理启发了AI...
诺贝尔化学奖是AI for Science,物理奖是Science for AI 2024年又一个诺贝尔奖给了AI!这次是化学奖! 一半归华盛顿大学的戴维·贝克(David Baker),“因其在蛋白质计算设计方面的贡献”;另一半归谷歌DeepMind的戴米斯·哈萨比斯(Demis Hassabis)和约翰·M·江珀(John M.Jumper),“因其在蛋白质结构预测方面的贡献”...