主讲老师在国内顶尖课题组中从事人工智能蛋白质设计研究,目前的主要研究方向是蛋白质设计机器学习算法开发与应用,在蛋白质工程和生物相关算法开发有丰富的实战经验。已在Nature communications、ACS Catalysis等国际知名期刊和ICML等机器学习会议上发表...
深度学习在蛋白质设计领域的前沿研究主要集中在蛋白质结构预测、蛋白质序列设计、蛋白质-蛋白质相互作用预测、蛋白质功能注释和蛋白质优化与筛选等方面。这些研究方向为开发新的功能性蛋白质和药物靶点提供了新思路,并在生物医学、药物研发和生...
蛋白质设计的承诺是能够设计出解决当前问题的新蛋白质,以及自然界中的蛋白质自然选择过程中的相关问题。”据《科学》(Science)杂志10月16日报道,AI设计的蛋白质可以改变医学和技术——新工具已经使研究人员能够生产出用于疫苗和癌症治疗的设计蛋白、人工污染消除酶和能够促进矿物质生长的分子组件。例如2020年,新冠肺...
帮助学员们, 通过本次培训学员将了解蛋白质设计的底层逻辑与基本规则,并掌握蛋白质设计中的常见蛋白质设计算法的实际操作,具备基本的蛋白质设计算法开发的基础能力及前沿视野 主讲老师在国内顶尖课题组中从事人工智能蛋白质设计研究,目前的主要研究方向是蛋白质设计机器学习算法开发与应用,在蛋白质工程和生物相关算法开发有...
这样的设计蛋白质不仅可以帮助训练 AI 模型,还可以作为更复杂的分子机器的构建块,例如将化学能转化为机械能以完成细胞工作的酶。其他团队已经开发出算法(例如AF-Cluster),在预测中注入一定程度的随机性,以探索替代构象。但 Steinegger 表示,这些方法是否适用于所有蛋白质类别仍不清楚。蛋白质模块化组装 酶并不是...
近几年,基于 AI 的蛋白质从头设计快速发展,已被成功应用于抗体设计、小蛋白药物设计等领域,和传统设计方法相比,其显著提高了设计成功率和效率。AI 蛋白质设计得益于近几年的两大技术突破:一是蛋白质结构预测领域的AlphaFold2 模型,它为蛋白质计算领域包括蛋白质设计领域,提供了基础的神经网络模型架构、蛋白质...
在这项最新研究中,David Baker团队着手开发一种通用的方法来设计具有高形状互补性的小分子结合蛋白,并可应用于下游传感。研究团队假设,与基于固定支架的方法相比,从鉴定与靶向小分子具有高度形状互补性的蛋白质支架开始的设计方法将能够实现更高的亲和力结合,并能够与柔性和极性靶标小分子结合。
AI蛋白质设计课表 *涉及使用代码/计算工具的操作 一、蛋白质相关的深度学习简介 1.基础概念 1.1.机器学习简介:从手写数字识别到大语言模型 1.2.蛋白质结构预测与设计回顾 1.3.Linux简介 1.4.代码环境:VS code和Jupyter notebook* 1.5.Python关键概念介绍* ...
近年来AI技术突飞猛进,推动一些细分领域不断取得突破。2020年末,谷歌旗下DeepMind推出的第二代用于蛋白质三维结构预测的人工智能系统AlphaFold2,一举破解了困扰生物学界50多年的“蛋白质折叠”难题,引发轰动。在AI技术的助力下,人类在蛋白质设计领域仿佛“任督二脉”被打通,科学家可以直接通过蛋白质序列预测蛋白质...
科技突破往往发生在交叉领域,蛋白质预测突破背后,一个关键便是源自自然语言处理的技术 Transformer,应用在了生物领域。这样的模式正继续发生:源自AI 绘画领域的扩散模型,正在加速蛋白质设计。蛋白质设计可以做的事情太多了。这项能力让人类得以生产分子级别的「机器」,它们可以是新的药物、疫苗、新的纳米材料、为...