本书介绍嵌入式系统中的机器学习算法优化原理、设计方法及其实现技术。内容涵盖通用嵌入式优化技术,包括基于SIMD指令集的优化、内存访问模式优化、参数量化等,并在此基础上介绍了信号处理层面的优化、AI推理算法优化及基于神经网络的AI算法训练—推理联合的优化理论与方法。其中信号处理层面优化介绍了基于线性代数的快速近似...
本书介绍嵌入式系统中的机器学习算法优化原理、设计方法及其实现技术。内容涵盖通用嵌入式优化技术,包括基于SIMD指令集的优化、内存访问模式优化、参数量化等,并在此基础上介绍了信号处理层面的优化、AI推理算法优化及基于神经网络的AI算法训练—推理联合的优化理论与方法。其中信号处理层面优化介绍了基于线性代数的快速近似...
本书介绍在嵌入式系统中的机器学习算法优化原理、设计方法及其实现技术。内容涵盖通用嵌入式优化技术,包括基于SIMD指令集的优化、内存访问模式优化、参数量化等。并在此基础上介绍了信号处理层面的优化,包括AI推理算法及基于神经网络的AI算法训练-推理联合的优化理论与方法。其中信号处理层面优化包括了基于线性代数的快速近似...
本书介绍嵌入式系统中的机器学习算法优化原理、设计方法及其实现技术。内容涵盖通用嵌入式优化技术,包括基于SIMD指令集的优化、内存访问模式优化、参数量化等,并在此基础上介绍了信号处理层面的优化、AI推理算法优化及基于神经网络的AI算法训练—推理联合的优化理论与方法。其中信号处理层面优化介绍了基于线性代数的快速近似...
本书介绍AI领域多种机器学习算法在嵌入式系统上的底层实现和优化技术。现在很多机器学习算法基于海量存储和运算,对功耗、体积、计算能力和存储容量有较高要求,而不同领域的嵌入式系统受限于各自的应用需求,难以满足所有条件。目前在嵌入式系统中实现复杂机器学习算法有多条途径,包括基于通用GPU多处理器架构的方案、基于...
AI嵌入式系统:算法优化与实现一、本文概述1、人工智能与嵌入式系统的结合随着科技的迅速发展,()和嵌入式系统(EmbeddedSystem)已成为现代社会中不可或缺的技术支柱。而将这两者结合起来,则能够实现更为强大和智能的应用。 人工智能是一种模拟人类智能的计算机技术,它使机器能够学习、推理、理解和解决各种复杂问题。嵌入...
本书介绍AI领域多种机器学习算法在嵌入式系统上的底层实现和优化技术。现在很多机器学习算法基于海量存储和运算,对功耗、体积、计算能力和存储容量有较高要求,而不同领域的嵌入式系统受限于各自的应用需求,难以满足所有条件。目前在嵌入式系统中实现复杂机器学习算法有多条途径,包括基于通用GPU多处理器架构的方案、基于...
内容简介:本书介绍嵌入式系统中的机器学习算法优化原理、设计方法及其实现技术。内容涵盖通用嵌入式优化技术,包括基于SIMD指令集的优化、内存访问模式优化、参数量化等,并在此基础上介绍了信号处理层面的优化、AI推理算法优化及基于神经网络的AI算法训练—推理联合的优化理论与方法。其中信号处理层面优化介绍了基于线性代数...
AI嵌入式系统:算法优化与实现读书笔记模板01思维导图读书笔记作者介绍内容摘要目录分析精彩摘录目录0305020406思维导图系统算法优化系统算法层面方法小结参考文献机器神经网络编程数据第章算法乘法运算优化软件本书关键字分析思维导图内容摘要