1、什么是LLM Agent + RAG? RAG技术为LLM Agent提供了额外的知识来源。传统的LLM虽然能够从大规模文本数据中学习到丰富的语言知识和模式,但它们在处理特定领域或需要专业知识的问题时可能表现不足。 通过引入RAG,LLM Agent能够在需要时查询外部知识库,如专业数据库、学术论文、行业报告等,从而增强其知识广度和深度。
上下分别与Agent层、RAG层相连,按照Agent的调用请求或RAG检索到的文本,将问题或者相关文本输入到LLM中,获取其生成的回答或者推理结果。大语言模型 语言模型接口后面的LLM已经比较成熟,类似“兰台知音”这样的互联网应用直接调用常见的LLM即可,比如文心、通义、豆包等;当然也可以选择档案行业垂直大模型,比如八九数码...
通过给 LLM 模型参考,解决 LLM 的幻觉,以提高输出结果的正确性:适当的给模型一些参考,也就是通常所属的 one-shot 或者 few-shots,让 LLM 知道输入和输出之间的对应关系。 让LLM 进行自检自查:由于各种原因,特别是在和 LLM 交互的步骤比较多,提示词比较长的情况下 LLM 的回答有可能是错误的,这时一个可选的选...
在RAG场景中,通过将每个段落定义为一个块,Block-Attention能够重用之前见过的段落的KV状态,从而显著降低推理时的延迟和计算开销。 Block-Attention的实现包括块分割、位置重新编码以及对大模型(LLM)的微调,以适应Block-Attention机制。实验结果显示,在四个RAG基准测试中,经过块微调后,Block-Attention模型的性能与自注意力...
RAG Pipeline: 广泛的 RAG 功能,涵盖从文档摄入到检索的所有内容,支持从 PDF、PPT 和其他常见文档格式中提取文本的开箱即用的支持。 Agent 智能体: 您可以基于 LLM 函数调用或 ReAct 定义 Agent,并为 Agent 添加预构建或自定义工具。Dify 为 AI Agent 提供了50多种内置工具,如谷歌搜索、DELL·E、Stable Diffus...
LLM、RAG和Agent技术是人工智能领域的重要组成部分,它们相互关联、相互促进,共同推动着人工智能技术的发展和应用。通过深入了解这些技术的概念、关系和应用场景,我们可以更好地把握人工智能技术的发展趋势和未来方向,为人工智能技术的创新和应用提供有力支持。 同时,我们也应该看到,这些技术的发展还面临着诸多挑战和问题,...
AI Agent是融合大语言模型(LLM)与检索增强生成(RAG)技术的智能实体,具备环境感知、自主理解、决策及执行能力。它基于LLM实现自然语言交互,借助RAG增强知识获取,形成综合智能体系。AI Agent独立思考,调用工具,高效完成复杂任务,是智能时代的关键技术之一。其出现不仅推动了技术进步,更深刻改变了人类生活与工作的方式,展现...
结合RAG技术和智能体,系统能够实时从供应商数据库、仓库库存记录和销售数据中检索关键信息,智能调整库存水平,减少库存积压和缺货风险。 引言 随着人工智能技术的飞速发展,大型语言模型(LLM)、检索增强生成(RAG)和智能体(Agent)已经成为推动该领域进步的关键技术,这些技术不仅改变了我们与机器的交互方式,而且为各种应用和...
大模型(LLM)检索增强生成(RAG)智能体(Agent)定义大型语言模型(LLM),如GPT系列、BERT等,是利用大量文本数据训练的模型,能够生成连贯的文本、理解语言、回答问题等。检索增强生成技术结合了传统的信息检索技术和最新的生成式模型。它先从一个大型的知识库中检索出与查询最相关的信息,然后基于这些信息生成回答。智能体是...
大模型(LLM) 检索增强生成(RAG) 智能体(Agent) 定义 大型语言模型(LLM),如GPT系列、BERT等,是利用大量文本数据训练的模型,能够生成连贯的文本、理解语言、回答问题等。 检索增强生成技术结合了传统的信息检索技术和最新的生成式模型。它先从一个大型的知识库中检索出与查询最相关的信息,然后基于这些信息生成回答。