#使用npg颜色 ggviolin(df, x="celltype", y="AUC", width = 0.6, color = "black",#轮廓颜色 fill="celltype",#填充 palette = "npg", add = 'mean_sd', xlab = F, #不显示x轴的标签 bxp.errorbar=T,#显示误差条 bxp.errorbar.width=0.5, #误差条大小 size=1, #箱型图边线的粗细 outl...
add='mean_sd',bxp.errorbar=T,#显示误差条 bxp.errorbar.width=0.05,#误差条大小 size=0.5,#箱型图边线的粗细 palette="npg",legend="right")ggsave(filename="violin.pdf",width=8,height=5) 在此选择的pathway通路及基因集(基于文章给出的部分基因)是我自己选用,并没有特别的生物学意义,只是做一下...
#使用npg颜色ggviolin(df, x="celltype", y="AUC", width = 0.6, color = "black",#轮廓颜色 fill="celltype",#填充 palette = "npg", add = 'mean_sd', xlab = F, #不显示x轴的标签 bxp.errorbar=T,#显示误差条 bxp.errorbar.width=0.5, #误差条大小 size=1, #箱型图边线的粗细 outlie...
1.3e-06 *** T-test# Plotbp<-ggbarplot(ToothGrowth, x="supp", y="len",fill="dose", palette="jco",add="mean_sd", add.params=list(group="dose"),position=position_dodge(0.8))bp+stat_pvalue_manual(stat.test, x="supp", y.position=33,label="p.signif",position=position_dodge(0.8...
品牌名称:明纬(MEANWELL) 商品型号:ADD系列 订货编码:100043137086 包装规格:- 选择型号 ADD-55A丨2.5A/3A/0.23A ADD-55B丨1.3A/3A/0.16A ADD-155A丨9.5A/3A/0.5A ADD-155B丨4.5A/3A/0.5A ADD-155C丨2.3A/3A/0.2A 其他型号 共5个型号
mean() # mean over batch dimension else: 3 changes: 3 additions & 0 deletions 3 sdxl_train_control_net_lllite.py Original file line numberDiff line numberDiff line change @@ -44,6 +44,7 @@ pyramid_noise_like, apply_noise_offset, scale_v_prediction_loss_like_noise_prediction, apply...
Dictionary, Encyclopedia and Thesaurus - The Free Dictionary13,862,426,660visits served TheFreeDictionary Google ? Keyboard Word / Article Starts with Ends with Text EnglishEspañolDeutschFrançaisItalianoالعربية中文简体PolskiPortuguêsNederlandsNorskΕλληνικήРусский...
bxp + stat_pvalue_manual(stat.test, label ="p.adj.signif")# Manually specify the y positionbxp + stat_pvalue_manual(stat.test, label ="p.adj.signif", y.position =35)# Bar plotstat.test <- stat.test %>% add_xy_position(fun ="mean_sd", x ="dose") ...
text_embeddings *= (previous_mean / current_mean).unsqueeze(-1).unsqueeze(-1) if uncond_prompt is not None: previous_mean = uncond_embeddings.float().mean(axis=[-2, -1]).to(uncond_embeddings.dtype) uncond_embeddings *= uncond_weights.unsqueeze(-1) current_mean = uncond_embeddings....
The highest frequency may varies between cores which mean cores can running at different max frequency, so can use it as a core priority and give a hint to scheduler in order to put critical task to the higher priority core. Issue #I9VSQA:[openEuler-1.0-LTS] cpufreq: acpi-cpufreq: add...