#使用npg颜色 ggviolin(df, x="celltype", y="AUC", width = 0.6, color = "black",#轮廓颜色 fill="celltype",#填充 palette = "npg", add = 'mean_sd', xlab = F, #不显示x轴的标签 bxp.errorbar=T,#显示误差条 bxp.errorbar.width=0.5, #误差条大小 size=1, #箱型图边线的粗细 outl...
add='mean_sd',bxp.errorbar=T,#显示误差条 bxp.errorbar.width=0.05,#误差条大小 size=0.5,#箱型图边线的粗细 palette="npg",legend="right")ggsave(filename="violin.pdf",width=8,height=5) 在此选择的pathway通路及基因集(基于文章给出的部分基因)是我自己选用,并没有特别的生物学意义,只是做一下...
#使用npg颜色ggviolin(df, x="celltype", y="AUC", width = 0.6, color = "black",#轮廓颜色 fill="celltype",#填充 palette = "npg", add = 'mean_sd', xlab = F, #不显示x轴的标签 bxp.errorbar=T,#显示误差条 bxp.errorbar.width=0.5, #误差条大小 size=1, #箱型图边线的粗细 outlie...
For a small sigma value, the mean of a lognormal distribution is approximately equal to log(model_value). For details, see Lognormal Distribution (Statistics and Machine Learning Toolbox). Get Vmx = sbioselect(m1,'Name','Vmx'); pd_Vmx.mu = log(Vmx.Value); pd_Vmx.sigma = 0.2 pd_...
Example: {'max(drug)','mean(drug)'} Data Types: char | string | cell units— Units for observable expressions character vector | string | string vector | cell array of character vectors Units for the observable expressions, specified as a character vector, string, string vector, or cell ar...
1.3e-06 *** T-test# Plotbp<-ggbarplot(ToothGrowth, x="supp", y="len",fill="dose", palette="jco",add="mean_sd", add.params=list(group="dose"),position=position_dodge(0.8))bp+stat_pvalue_manual(stat.test, x="supp", y.position=33,label="p.signif",position=position_dodge(0.8...
Example: {'max(drug)','mean(drug)'} Data Types: char | string | cell units— Units for observable expressions character vector | string | string vector | cell array of character vectors Units for the observable expressions, specified as a character vector, string, string vector, or cell ar...
EnglishEspañolDeutschFrançaisItalianoالعربية中文简体PolskiPortuguêsNederlandsNorskΕλληνικήРусскийTürkçeאנגלית 9 RegisterLog in Sign up with one click: Facebook Twitter Google Share on Facebook ...
trial2 <- trial %>% select(trt, grade) trial3 <- trial2[-which(trial2$grade == "III"),] trial4 <- droplevels(trial3) trial4 %>% tbl_summary( by = trt, statistic = list(all_continuous() ~ "{mean} ({sd})", all_categorical() ~ "{n} / {N} ({p}%)"), digits = al...
Would it be possible to add details when upscaling like in add-detail-xl.safetensors Best regards Max