优化器对ACC影响也挺大的,比如上图Adam比SGD高了接近3个点。故选择一个合适的优化器也很重要。 Adam收敛速度很快,SGDM相对要慢一些,但最终都能收敛到比较好的点 训练集上Adam表现最好,但验证集上SGDM最好。可见SGDM在训练集和验证集一致性上,比Adam好。 NLP任务实验 LSTM模型上,可见Adam比SGDM收敛快很多。最终...
opt_SGD=torch.optim.SGD(net_SGD.parameters(),lr=LR)opt_Momentum=torch.optim.SGD(net_Momentum.parameters(),lr=LR,momentum=0.8)opt_RMSprop=torch.optim.RMSprop(net_RMSprop.parameters(),lr=LR,alpha=0.9)opt_Adam=torch.optim.Adam(net_Adam.parameters(),lr=LR,betas=(0.9,0.99)) 代码语言:javascri...
SGD作为最基础的优化器,具有计算简单和实时更新的优点,但收敛速度较慢且容易陷入局部最优。SGDM通过引入动量项加速了收敛并减少了震荡。Adagrad和RMSProp通过自适应调整学习率提高了优化效率,而Adam则结合了动量法和RMSProp的优点,成为目前广泛使用的优化器之一。 在实际应用中,建议根据具体任务和数据集的特点选择合适的优...
通过上述分析我们得知,Adam在前期优化速度较快,SGDM在后期优化精度较高;SWATS算法在提出在前期使用Adam算法,后期使用SGDM算法,从而在保证算法精度的同时,提高了算法的速度,但此算法存在两个问题:何时切换和如何切换两种算法,因为原作者并并没有针对这两个问题给出确切的解决方案,因此SWATS算法的应用并不是很广泛 3. ...
1.优化器:从SGD到Adam到AdamW09-292.浅谈位置编码(RoPE)03-253.激活函数和GLU10-29 收起 1. SGD 随机梯度下降(stochastic gradient descent,SGD) 输入数据为(x, y)组成的pair,模型参数是WW,随机选择一批样本组成一个batch,输入模型计算loss:L=f(X,Y;W)L=f(X,Y;W),并求出梯度,更新参数时: W=W...
优化损失函数说明了就是想让损失函数收敛到了一定的值,这样模型才是最优的。 梯度下降优化法经历了SGD→SGDM→NAG→AdaGrad→AdaDelta→Adam→Nadam 这样的发展历程。之所以会不断地提出更加优化的方法,是引入了动量Momentum概念。 2.梯度下降法调优 梯度下降法就好比一个蒙着眼睛的人下山,每次在负梯度最大的方向,向...
SGD对所有参数更新时应用同样的 learning rate,如果我们的数据是稀疏的,我们更希望对出现频率低的特征进行大一点的更新。LR会随着更新的次数逐渐变小。 5.Adam:Adaptive Moment Estimation 这个算法是另一种计算每个参数的自适应学习率的方法。相当于 RMSprop + Momentum ...
Adam是另一种自适应学习率的方法。总结以上算法,以SGD作为最初的算法,Momentum在其基础上加入了一阶动量(历史梯度的累计), AdaGrad和RMSProp在其基础上加入了二阶动量(历史梯度的平方累计),Adam就是结合了一阶动量和二阶动量算法。 10.Nadam Adam是集大成者,而Nadam = Adam + NAG。
本文将从随机梯度下降(Stochastic Gradient Descent,SGD)到自适应矩估计(Adam)这两个优化器进行比较与分析。 1.随机梯度下降(SGD) 随机梯度下降是最简单、最基础的优化器之一,其主要思想是通过计算损失函数对参数的梯度来更新参数。每次迭代时,SGD随机选择一个小批量的训练样本进行梯度计算和参数更新,因此它的计算效率...
Adam是一种近似于随机梯度下降的优化器,用于优化模型的参数。Adam的基本思想是,通过维护模型的梯度和...