优势函数在前文中也介绍过,它的计算方法是给出动作a的值函数与所有可能动作的值函数均值的差值,也就是在状态s下选取动作a的优势。如果该值大于0,说明动作a优于均值,是好的选择,反之则是差的选择。而s下给出动作a的值函数就是动作值函数Q值,s下所有可能动作的值函数的均值就是状态值V值。
公式(3)中A(s_{i,t},a_{i,t})被称之为优势函数,意味着在状态s_{i,t}下,执行动作a_{i,t}后得到的累计回报会比平均值多多少。 由于Q^\pi(s_{i,t},a_{i,t})\approx r(s_t,a_t)+V^\pi(s_{t+1}),因此公式(3)可以写为: \begin{aligned}\nabla_\theta J(\theta)&\approx \frac...
我们可以为actor-critic编写新的修改后的优势函数: 或者,将优势函数称为TD错误,如Actor-Critic框架所示。如上所述,参与者的学习是基于策略梯度的。参与者的策略梯度表达式如下所示: 参与者的政策梯度表达 Actor-Critic算法的伪代码[6] 1、使用来自参与者网络的策略πθ对{s_t,a_t}进行采样。 2、评估优势函数A...
A2C算法继续在这个“权重”上做文章进行改进,给Q值减去了一个baseline,转变为了优势函数A。直观感受上,它让“权重”变得有正有负了,即采用了类似标准化的方法将一个绝对的值变成了相对的值,给Q值定义了一个标准baseline,大于baseline的Q值,优势函数为正数,策略更新时倾向于增大这些动作的概率;反之小于baseline的Q值,...
Actor-critic类似于带有基准的称为REINFORCE的策略梯度算法。强化是MONTE-CARLO的学习,它表示总收益是从整个轨迹中采样的。但是在参与者评论家中,我们使用引导程序。因此,优势功能的主要变化。 策略梯度总回报中的原始优势函数更改为自举。资料来源:[3] 最后,b(st)更改为当前状态的值函数。可以表示如下: ...
我们可以为actor-critic编写新的修改后的优势函数: 或者,将优势函数称为TD错误,如Actor-Critic框架所示。 如上所述,参与者的学习是基于策略梯度的。 参与者的策略梯度表达式如下所示: 参与者的政策梯度表达 Actor-Critic算法的伪代码[6] 1、使用来自参与者网络的策略πθ对{s_t,a_t}进行采样。
在A3C中,我们使用优势函数来实现无偏估计。优势函数是一个状态或动作相对于平均水平的优势度量,它可以帮助我们更好地理解环境动态和决策过程。 优势函数的定义如下: Ad(s, a) = Q(s, a) - V(s) 其中,Q(s, a)表示状态s下执行动作a的期望回报,V(s)表示状态s的平均值回报。优势函数Ad(s, a)表示在...
因此,Actor-Critic算法在收敛性方面具有优势。 Actor-Critic算法具有较好的样本利用能力。在强化学习中,样本利用能力是指如何有效地利用已有的样本来提高学习效率。策略梯度方法通常需要大量的样本来进行更新,而值函数方法可以通过函数逼近的方式来利用样本。Actor-Critic算法将这两种方法相结合,既能够通过策略梯度方法来更新...
评估优势函数 批量演员-评论家算法 (batch actor-critic algorithm): 根据策略 得到一些样本 ,包括所处状态、行动和收益。 使用样本收益之和拟合 。这一步样本可以做蒙特卡洛,也可以做自助法;拟合可以用最小二乘的目标函数。 评估优势函数 。 。 。 Actor-Critic算法(公式14)是低方差的(由于Critic的存在)、有偏差...
优势函数(Advantage Function)是Actor-Critic算法中的另一个重要概念。优势函数用来评估一个动作相对于其他动作的优劣程度。具体来说,优势函数定义为一个动作的值函数减去平均值函数,反映了通过采取该动作相对于平均水平能够获得的额外奖励。优势函数的引入可以帮助Actor更准确地评估动作的价值,从而提高策略改进的效果。 通...