[5]刘建平:强化学习(十六) 深度确定性策略梯度(DDPG) [6]刘建平:强化学习(十五) A3C 1 Actor-Critic算法 1.1 Actor和Critic 该算法使用拟合策略函数的神经网络作为 Actor,使用拟合状态值函数的神经网络作为 Critic。因此,Actor 是 Policy Based 算法,可以轻松地在连续动作空间内选择合适的动作;Critic 是 Value Bas...
DDPG算法采用两个神经网络,Actor 和Critic。两个网络都包含两个隐藏层,每个隐藏层包含400个节点。隐藏层使用ReLU (Rectified Linear Unit)激活函数,而Actor网络的输出层使用tanh激活函数产生范围为-1到1的动作。Critic网络的输出层没有激活函数,因为它直接估计q函数。以下是网络的代码:import numpy as npimport ...
在这个项目中,我们选择了DDPG算法,因为这是一种专门设计用于处理连续状态和动作空间的actor-critic方法。 DDPG算法通过结合两个神经网络,结合了基于策略和基于值的方法的优势:行动者网络(Actor network)决定给定当前状态下的最佳行为,批评家网络(Critic network)估计状态-行为值函数(Q-function)。这两种网络都有目标网络...
在这个项目中,我们选择了DDPG算法,因为这是一种专门设计用于处理连续状态和动作空间的actor-critic方法。 DDPG算法通过结合两个神经网络,结合了基于策略和基于值的方法的优势:行动者网络(Actor network)决定给定当前状态下的最佳行为,批评家网络(Critic network)估计状态-行为值函数(Q-function)。这两种网络都有目标网络...
在本文中,我们将介绍在 Reacher 环境中训练智能代理控制双关节机械臂,这是一种使用 Unity ML-Agents 工具包开发的基于 Unity 的模拟程序。 我们的目标是高精度的到达目标位置,所以这里我们可以使用专为连续状态和动作空间设计的最先进的Deep Deterministic Policy Gradient (DDPG) 算法。
在这个项目中,我们选择了DDPG算法,因为这是一种专门设计用于处理连续状态和动作空间的actor-critic方法。 DDPG算法通过结合两个神经网络,结合了基于策略和基于值的方法的优势:行动者网络(Actor network)决定给定当前状态下的最佳行为,批评家网络(Critic network)估计状态-行为值函数(Q-function)。这两种网络都有目标网络...
在本文中,我们将介绍在 Reacher 环境中训练智能代理控制双关节机械臂,这是一种使用 Unity ML-Agents 工具包开发的基于 Unity 的模拟程序。 我们的目标是高精度的到达目标位置,所以这里我们可以使用专为连续状态和动作空间设计的最先进的Deep Deterministic Policy Gradient (DDPG) 算法。
我们可以想像,Policy Gradient 就像一个演员(Actor),它根据某一个状态s,然后作出某一个动作或者给出动作的分布,而不像Q-learning 算法那样输出动作的Q函数值。 2.1.3 Actor Critic Actor-Critic 是Q-learning 和 Policy Gradient 的结合。 为了导出 Actor-Critic 算法,必须先了解Policy Gradient 算法是如何一步步优...
在Actor-Critic算法中,Actor基于概率选择动作,Critic则通过评估动作的得分来优化策略。在DDPG算法中,基于确定性策略梯度DPG,算法简化了随机策略梯度的计算,通过优化Q值,提高了学习的稳定性和效率。而A3C算法则通过异步训练框架和网络结构的优化,显著提高了学习速度和模型的收敛性。总的来说,Actor-...
Actor-Critic是RL的一种DDPG模型,其结合value-based和policy-based两类强化算法。Actor基于概率选择行为,Critic基于Actor的行为评判行为的得分,Actor根据Critic的评分修改选择行为的概率。 具体来说,Actor是一个神经网络,用于学习动作,输入state,经过神经网络Actor输出action。Critic是一个神经网络,用于预测在这个状态下的...