1 Actor-Critic算法 1.1 Actor和Critic 1.2 Critic评估点 2 DDPG(Deep Deterministic Policy Gradient)算法 2.1 随机策略和确定性策略 2.2 确定性策略梯度DPG 2.3 DDPG的原理 3 A3C算法(Asynchronous Advantage Actor-critic) 3.1 Critic评估点的优化——A2C算法(Advantage Actor-critic) 3.2 异步训练框架 3.3 网络结...
当涉及到像Reacher问题这样的连续控制任务时,算法的选择对于实现最佳性能至关重要。在这个项目中,我们选择了DDPG算法,因为这是一种专门设计用于处理连续状态和动作空间的actor-critic方法。DDPG算法通过结合两个神经网络,结合了基于策略和基于值的方法的优势:行动者网络(Actor network)决定给定当前状态下的最佳行为,批...
在这个项目中,我们选择了DDPG算法,因为这是一种专门设计用于处理连续状态和动作空间的actor-critic方法。 DDPG算法通过结合两个神经网络,结合了基于策略和基于值的方法的优势:行动者网络(Actor network)决定给定当前状态下的最佳行为,批评家网络(Critic network)估计状态-行为值函数(Q-function)。这两种网络都有目标网络...
在这个项目中,我们选择了DDPG算法,因为这是一种专门设计用于处理连续状态和动作空间的actor-critic方法。 DDPG算法通过结合两个神经网络,结合了基于策略和基于值的方法的优势:行动者网络(Actor network)决定给定当前状态下的最佳行为,批评家网络(Critic network)估计状态-行为值函数(Q-function)。这两种网络都有目标网络...
深度确定性策略梯度算法(Deep Deterministic Policy Gradient, DDPG)中的Critic网络就是希望能对状态-动作对(s, a)给出正确的分数,其优化的目标函数就是公式(1-3),这和DQN的目标函数是一样的。Q值学习的目标是函数逼近,DDPG中在Q值学习中有两点值的关注。 回放缓存:也就是之前所有策略的集合。DDPG是一个off-po...
通过使用Critic网络估计q函数,使用Actor网络确定最优行为,DDPG算法有效地融合了策略梯度方法和DQN的优点。这种混合方法允许代理在连续控制环境中有效地学习。 import random from collections import deque import torch import torch.nn as nn import numpy as np ...
actor-critic 详解Actor-Critic是RL的一种DDPG模型,其结合value-based和policy-based两类强化算法。Actor基于概率选择行为,Critic基于Actor的行为评判行为的得分,Actor根据Critic的评分修改选择行为的概率。 具体来说,Actor是一个神经网络,用于学习动作,输入state,经过神经网络Actor输出action。Critic是一个神经网络,用于预测...
连续控制的算法选择:DDPG 当涉及到像Reacher问题这样的连续控制任务时,算法的选择对于实现最佳性能至关重要。在这个项目中,我们选择了DDPG算法,因为这是一种专门设计用于处理连续状态和动作空间的actor-critic方法。 DDPG算法通过结合两个神经网络,结合了基于策略和基于值的方法的优势:行动者网络(Actor network)决定给定当...
强化学习 DDPG 的实现(3) 如何训练 actor 和 critic #强化学习 #DDPG算法 - zidea于20240701发布在抖音,已经收获了1.0万个喜欢,来抖音,记录美好生活!
这可能涉及将Transformer编码器与DDPG的Actor和Critic网络相结合,以改进策略和价值函数的估计。分布式DDPG:...