需要注意的是式(2.2)的近似还是一个无偏估计,但是式(2.3)就是一个有偏估计,因为新引入的\hat{V}_{\phi}这一项必然是与真正的 value function 存在偏差的。 3 Actor-Critic 做好了之前的铺垫就可以进入到本节的真正的主题 Actor-Critic 算法: Actor-Critic 算法和之前 经典的 policy gradient 的算法相比多了...
2.3 Actor-Critic优缺点 优点 相比以值函数为中心的算法,Actor - Critic 应用了策略梯度的做法,这能让它在连续动作或者高维动作空间中选取合适的动作,而Q-learning 做这件事会很困难甚至瘫痪。、 相比单纯策略梯度,Actor - Critic 应用了Q-learning 或其他策略评估的做法,使得Actor Critic 能进行单步更新而不是回合...
即算法的本质是在计算 当前状态s, 采取某个动作 a 后会获得的未来的奖励的期望,这个值就是 Q(s,a)。换句话说,我们可以把这个算法的核心看成一个评论家(Critic),而这个评论家会对我们在当前状态s下,采取的动作a这个决策作出一个评价,评价的结果就是Q(s,a)的值。 Q-learning 算法却不怎么适合解决连续动作...
2.2 Actor-Critic算法流程 评估点基于TD误差,Critic使用神经网络来计算TD误差并更新网络参数,Actor也使用神经网络来更新网络参数 输入:迭代轮数T,状态特征维度n,动作集A,步长$\alpha$,$\beta$,衰减因子$\gamma$,探索率$\epsilon$, Critic网络结构和Actor网络结构。 输出:Actor网络参数$\theta$,Critic网络参数$w$ ...
2.2 Actor-Critic算法流程 评估点基于TD误差,Critic使用神经网络来计算TD误差并更新网络参数,Actor也使用神经网络来更新网络参数 输入:迭代轮数T,状态特征维度n,动作集A,步长$\alpha$,$\beta$,衰减因子$\gamma$,探索率$\epsilon$, Critic网络结构和Actor网络结构。
Actor-Critic 是Q-learning 和 Policy Gradient 的结合。 为了导出 Actor-Critic 算法,必须先了解Policy Gradient 算法是如何一步步优化策略的。 如上图所示, 最简单的Policy Gradient 算法要优化的函数如下: L=∑logπθ(st,at)vt 其中vt要根据 Monte-Carlo 算法估计,故又可以写成: ...
在Actor-Critic算法 里面,最知名的方法就是 A3C(Asynchronous Advantage Actor-Critic)。 如果去掉 Asynchronous,只有 Advantage Actor-Critic,就叫做A2C。 如果加了 Asynchronous,变成Asynchronous Advantage Actor-Critic,就变成A3C。 2.1 Actor-Critic 2.1.1 Q-learning ...
强化学习基础篇[3]:DQN、Actor-Critic详细讲解 1.DQN详解 1.1 DQN网络概述及其创新点 在之前的内容中,我们讲解了Q-learning和Sarsa算法。在这两个算法中,需要用一个Q表格来记录不同状态动作对应的价值,即一个大小为 [状态个数,动作个数][状态个数,动作个数][状态个数,动作个数] 的二维数组。在一些简单的...
在Actor-Critic算法 里面,最知名的方法就是 A3C(Asynchronous Advantage Actor-Critic)。 如果去掉 Asynchronous,只有 Advantage Actor-Critic,就叫做A2C。 如果加了 Asynchronous,变成Asynchronous Advantage Actor-Critic,就变成A3C。 2.1 Actor-Critic 2.1.1 Q-learning ...
actor-critic算法则结合了actor和评论家两个部分,在actor模块负责探索、选择动作,评论家模块在每个时间步提供反馈,指导actor模块的决策。在不同模式下,如批量模式或在线模式,actor和评论家模块通过不同的方式相互协作,以期达到更高效、稳定的策略学习过程。设计合适的架构和算法策略,如利用神经网络拟合...