百度试题 结果1 题目a+e的转置的行列式为什么等于e+a 相关知识点: 试题来源: 解析 你这里进行的是什么转置?e的转置当然还是e而a的转置,其行列式也和a的行列式相等所以这里得到的行列式两边当然是相等的 反馈 收藏
A E的转置的行列式为什么等于A E的行列式?是沪江提供的学习资料,沪江是专业的互联网学习平台,致力于提供便捷优质的网络学习产品,在线课程和服务。
解析 不是转置=E+A,而是他们的行列式相等,任何一个矩阵的行列式和他转置都相等 反馈 收藏
不是转置=E+A,而是他们的行列式相等,任何一个矩阵的行列式和他转置都相等
推导过程如下:由题目可得:因为 |A|=|A'| 转置矩阵的行列式等于原矩阵的行列式 而乘积矩阵的行列式等于行列式的乘积 |AA'|=|A||A'| 所以 :|AA'|=|A||A'|=|A||A|=|A|²
转置行列式是指将行列式的行向量变为列向量,列向量变为行向量。也就是说,如果原来的行列式是 A,那么它的转置行列式就是 AT。现在,我们来证明行列式和它的转置行列式相等。首先,假设我们有一个 m x n 的矩阵 A。那么,我们有 A* = (A*)T,也就是说,A* 的转置等于 A。这是因为 A 的行...
关于a转置的行列式等于a的行列式如下:A的行列式一定等于A的转置的行列式。转置为将A的所有元素绕着一条从第1行第1列元素出发的右下方45度的射线作镜面反转,即得到A的转置,一个矩阵M,把它的第一行变成第一列,第二行变成第二列,最末一行变为最末一列,从而得到一个新的矩阵N,这一过程称为...
对于一个方阵a,我们可以发现a转置的行列式等于a的行列式。其相关解释如下:1、我们知道对于一个n阶方阵a,其行列式值可以通过对其n个特征值的乘积求得。而矩阵的转置并不会改变矩阵的特征值,因此a转置的行列式与a的行列式在数值上是相等的。矩阵的转置是将矩阵的行列进行互换。2、从矩阵运算的角度来看...
因为 |A|=|A'| 转置矩阵的行列式等于原矩阵的行列式 而乘积矩阵的行列式等于行列式的乘积 |AA'|=|A||A'| 所以 |AA'|=|A||A'|=|A||A|=|A|²
因为A和A转置行列式相等,因此均为正负1,A的行列式不为0,因此A可逆。相关性质:1、(A^T)^T=A 2、(A+)B^T=A^T+B^T 3、(kA)^T=kA^T 4、(AB)^T=B^TA^T 5、转置矩阵的行列式不变,将矩阵的行列互换得到的新矩阵称为转置矩阵,转置矩阵的行列式不变。相关的应用:线性变换...