当矩阵A,B,AB都是N阶对称矩阵时,A,B可交换,即AB=BA。证明: A,B,AB都是对称矩阵,即AT=A,BT=B,(AB)T=AB 于是有AB=(AB)T=(BT)(AT)=BA 当A,B可交换时,满足(A+B)^2=A^2+B^2+2AB 。证明: A,B可交换,即AB=BA (A+B)^2 =A^2+AB+BA+B^2 =A^2+AB+AB+B^...
简单计算一下即可,详情如图所示
当矩阵A,B,AB都是N阶对称矩阵时,A,B可交换,即AB=BA 证明:A,B,AB都是对称矩阵,即AT=A,BT=B,(AB)T=AB 于是有AB=(AB)T=(BT)(AT)=BA 当A,B可交换时,满足(A+B)²=A²+B²+2AB 证明:A,B可交换,即AB=BA (A+B)²=A²+AB+BA+B²=A...
当A,B,AB都为对称矩阵时,AB=BA 首先A、B互为逆矩阵时AB=BA=E 或者A、B其中一个等于E时,AE=EA=A,BE=EB=B 或者A、B其中一个等于零矩阵时,AB=BA=0(0表示零矩阵)或者A=B时,AB=BA=AA=BB
1、含义不同:向量积|c|=|a×b|=|a||b|sin,c为一向量,不是标量,且向量c与a,b垂直,满足右手定则。2、性质不同:AB表示两个矩阵A和B相乘,条件是A的列数等于B的行数,相乘后仍然是一个矩阵。|AB|表示两个矩阵A和B的乘积(是一个新的矩阵)的行列式,是一个数,|AB|=|A||B|。
A,B一般表示某个矩阵 X一般表示矩阵,或者一组未知数构成的列向量 E一般表示单位矩阵(对角线都是1,其余元素都是0)O一般表示零矩阵(元素全是0)
以下是本人对|AB|=|A||B|的证明方式,这种方法证明没有证明成功,出现了一些问题,希望有数学高手看到此证明,根据此思路完成证明 设:矩阵 {A_{n\times n}}、A_{ij}=a_{ij}、B_{n\times n},B_{ij}=b_{ij} ,则: {…
比如说 A,B都是二阶方阵。则 A|B 就是一个2行4列的矩阵,左边2列是A,右边两列是B。如果A,B的元素是已知的,可以用初等变换化阶梯形求得R(A|B)矩阵分解是将一个矩阵分解为比较简单的或具有某种特性的若干矩阵的和或乘积,矩阵的分解法一般有三角分解、谱分解、奇异值分解、满秩分解等。
一个增广矩阵。在线性代数中,[a,b]表示两个矩阵A和B拼接在一起的形式,即一个增广矩阵。A是主矩阵,B是附加在A右侧的辅助矩阵。增广矩阵的行数等于主矩阵A的行数,列数等于辅助矩阵B的列数。
行列式代表的是数字,数字相乘不分前後,矩阵是一个数表所有有顺序之分,所以这题是相等的。证:|AB|=|BA| 根据定义可得|AB|=|A| |B|(这是方阵行列式最基础的定义,基本不用求,要求自己用两个二阶矩阵来求)根据行列式定义,两个行列相乘位置互换是相等的(因为行列式可以等于一个值)所以,|...