AB的逆等于B的逆乘以A的逆,也就是AB的逆矩阵等于B的逆矩阵乘以A的逆矩阵。若AA^(-1)=E,即一个矩阵的逆矩阵只有一个,现在A和B的逆相等,当然得到A=B,同样A^(-1)=-B^(-1)也得到A=-B,若对于n阶方阵A,如果有n阶方阵B满足AB=BA=I则称矩阵A为可逆的,称方阵B为A的逆矩阵,记为也就是说A...
如果A+B可逆,那么设它的逆为C矩阵,E为单位矩阵,求解:(A+B)C=EC(A+B)=E即可(A+B)B^(-1)[A^(-1)+B^(-1)]^(-1)A^(-1)=[AB^(-1)+E]{A[A^(-1)+B^(-1)]}^(-1)=[E+AB^(-1)][E+AB^(-1)]]^(-1)=EB^(-1)[A^(-1)+B^(-1)]^(-1)A^(-1)(A+B)={[A^(...
ab的逆等于什么 AB的逆等于B的逆乘以A的逆,也就是AB的逆矩阵等于B的逆矩阵乘以A的逆矩阵。若AA^(-1)=E,即一个矩阵的逆矩阵只有一个,现在A和B的逆相等,当然得到A=B,同样A^(-1)=-B^(-1)也得到A=-B,若对于n阶方阵A,如果有n阶方阵B满足AB=BA=I则称矩阵A为可逆的。逆矩阵 如果矩阵A和B...
定理:如果矩阵A和B都是可逆矩阵,那么AB的逆矩阵等于B的逆矩阵乘以A的逆矩阵,即(AB)^-1 = B^-1 A^-1。 证明: 设A和B都是n阶可逆矩阵,则存在矩阵A^-1和B^-1,使得AA^-1 = A^-1 A = I和BB^-1 = B^-1 B = I,其中I是n阶单位矩阵。 将(AB)^-1与B^-1 A^-1相乘: (AB)^-1(B...
设A是一个n阶矩阵,若存在另一个n阶矩阵B,使得:AB=BA=E,则称方阵A可逆,并称方阵B是A的逆矩阵。如果要求AB矩阵的逆矩阵,那么该逆矩阵需要与AB矩阵相乘等于单位矩阵E,这是线性代数矩阵变换的反序原则。逆矩阵的性质:1、可逆矩阵是方阵。2、矩阵A是可逆的,其逆矩阵是唯一的。3、A的逆矩...
性质1:如果A、B是两个同阶可逆矩阵,则AB也可逆,且(AB)–1=B–1A–1。性质2:如果矩阵A可逆,则A的逆矩阵A–1也可逆,且(A–1)–1=A。性质3:如果A可逆,数k≠0,则kA也可逆,且(kA)–1=A–1。性质4:如果矩阵A可逆,则A的转置矩阵AT也可逆,且(AT)–1=(A–1)T。性质5::...
判断如下:互为逆矩阵是要乘积为单位矩阵E(有的教材记为大写的i,即I,容易与数字1混淆)1001但AB=(1/2)E所以A,B不是互逆矩阵。矩阵常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。
(AB)(B的逆A的逆)=A(BB的逆)A的逆=E 因此,B的逆A的逆即为(AB)的逆。 进一步的,可证明AB的伴随等于B的伴随乘A的伴随。 AB的伴随=AB的行列式×AB的逆=A的行列式×B的行列式×B的逆×A的逆=(B的行列式×B的逆)×(A的行列式×A的逆)=B的伴随×A的伴随。
1)看这个矩阵的行列式值是否为0,如果不是,则可逆;2)看这个矩阵的秩是否为N,如果是,这个矩阵是可逆的;3)定义方法:如果有一个矩阵B,使得矩阵A使得AB=BA=E,那么矩阵A是可逆的,B是A的逆矩阵;4)对于齐次线性方程AX=0,如果方程只有零解,则矩阵可逆,反之如果有无穷解,则矩阵不可逆;5)对于非齐次...