解答一 举报 对于二阶的可以简单记忆下:(a,b)(c,d)逆矩阵是:1/(ad-bc)*(d,-b)(-c,a)方法:(1)具体求一个矩阵的逆矩阵的方法:做一个n*2n矩阵,(AE),用初等行变换把他的左边一半化成E,这时,右边的一半就是A^-1,就是所求的矩阵的逆... 解析看不懂?免费查看同类题视频解析查看解答 ...
AB的逆等于B的逆乘以A的逆,也就是AB的逆矩阵等于B的逆矩阵乘以A的逆矩阵。若AA^(-1)=E,即一个矩阵的逆矩阵只有一个,现在A和B的逆相等,当然得到A=B,同样A^(-1)=-B^(-1)也得到A=-B,若对于n阶方阵A,如果有n阶方阵B满足AB=BA=I则称矩阵A为可逆的。逆矩阵 如果矩阵A和B互逆,由条件以及...
AB的逆矩阵等于B的逆矩阵乘以A的逆矩阵。设A是一个n阶矩阵,若存在另一个n阶矩阵B,使得:AB=BA=E,则称方阵A可逆,并称方阵B是A的逆矩阵。如果要求AB矩阵的逆矩阵,那么该逆矩阵需要与AB矩阵相乘等于单位矩阵E,这是线性代数矩阵变换的反序原则。逆矩阵的性质:1、可逆矩阵是方阵。2、矩阵A是...
1、可逆矩阵一定是方阵。 2、如果矩阵A是可逆的,其逆矩阵是唯一的。 3、A的逆矩阵的逆矩阵还是A。记作(A-1)-1=A。 4、可逆矩阵A的转置矩阵AT也可逆,并且(AT)-1=(A-1)T(转置的逆等于逆的转置)。 5、若矩阵A可逆,则矩阵A满足消去律。即AB=O(或BA=O),则B=O,AB=AC(或BA=CA),则B=C。 6、...
(AB)(B的逆A的逆)=A(BB的逆)A的逆=E 因此,B的逆A的逆即为(AB)的逆。 进一步的,可证明AB的伴随等于B的伴随乘A的伴随。 AB的伴随=AB的行列式×AB的逆=A的行列式×B的行列式×B的逆×A的逆=(B的行列式×B的逆)×(A的行列式×A的逆)=B的伴随×A的伴随。
矩阵的逆是指对于一个n维的矩阵A,存在一个n维的矩阵B,使得A乘以B等于单位矩阵,即AB=BA=E。以下是关于矩阵逆的求法和注意事项。方法/步骤 1 伴随矩阵法:伴随矩阵法是求解矩阵逆的一种方法。对于一个n维矩阵A,其逆矩阵可以用下式表示:A^(-1)=1/|A| * Adj(A),其中|A|表示A的行列式,Adj(A)表示...
1.加法:给定两个矩阵A和B,如果A和B都有逆矩阵,那么A + B的逆矩阵等于A的逆矩阵加上B的逆矩阵。 2.减法:给定两个矩阵A和B,如果A和B都有逆矩阵,那么A - B的逆矩阵等于A的逆矩阵减去B的逆矩阵。 3.乘法:给定两个矩阵A和B,如果A和B都有逆矩阵,那么A * B的逆矩阵等于B的逆矩阵乘以A的逆矩阵。
经济数学团队帮你解答,请及时采纳。谢谢!一、公式法:A的逆阵=(1/|A|)A*,其中A*是A的伴随阵。二、初等变换法:对分块矩阵(A,E)做行初等变换,前半部分A化成单位阵E时,后半部分E就化成了A的逆阵。三、猜测法:如果能通过已知条件得出AB=E或BA=E,则B就是A的逆矩阵。
逆矩阵是线性代数中非常重要的的一个概念,先来看看什么是逆矩阵? 设A是数域上的一个n阶矩阵,若在相同数域上存在另一个n阶矩阵B,使得:AB=BA=E,则我们称B是A的逆矩阵,而A则被称为可逆矩阵。注:E为单位矩阵。(该段文字来自于百度百科) 接下来以三阶矩阵为例,如下题 ...