解析 第一题,这是个隐函数,两边对x求导得:2y'-1=(1-y')*ln(x-y)+(x-y)*(1-y')/(x-y)=(1-y')*ln(x-y)+(1-y')所以[3+ln(x-y)]y'=ln(x-y)+2y'=[ln(x-y)+2]/[ln(x-y)+3]所以dy=[ln(x-y)+2]dx/[ln(x-y)+3]第二题,令g(x)=f(x)-......
第一题,这是个隐函数,两边对x求导得:2y'-1=(1-y')*ln(x-y)+(x-y)*(1-y')/(x-y)=(1-y')*ln(x-y)+(1-y')所以[3+ln(x-y)]y'=ln(x-y)+2y'=[ln(x-y)+2]/[ln(x-y)+3]所以dy=[ln(x-y)+2]dx/[ln(x-y)+3]第二题,令g(x)=f(x)-... 解析看不懂?免费查看同...
(x-y)]dy=[2+1n(x-y)]dx (x-y)[3+ln(xy)]dy =(xy)[2 +ln(xy)]dx [3(x-y)+(x-y)ln(x-y)]dy =[2(x-y)+(x-y)ln(x-y)]dx 因为2y-x=(x-y)In(x-y), 所以,[3(x-y)+(2y-x)]dy =[2(x-y)+(2y-x)dx (2x-y)dy=xdx ①若2x-y=0,则dy=2dx ②若2x-...
相关知识点: 试题来源: 解析 【解析】∵2y-x=(x-y)In(x-y) ==2dy-dx=(dx-dy)ln(x-y)+(dx-dy) ==2dy-dx=(dx-dy)(ln(x-y)+1) ==(ln(x-y)+3)dy=(ln(x-y)+2)dx ∴dy=(ln(x-y)+2)dx/(ln(x-y)+3). 反馈 收藏 ...
百度试题 结果1 题目求2y-x=(x-y)ln(x-y)确定的函数y=y(x)的微分dy.相关知识点: 试题来源: 解析 正确答案:2y-x=(x-y)ln(x-y)关于x求导得 涉及知识点:一元函数微分学及应用 反馈 收藏
看这个微分怎么求:x^2*dy+(y-2xy-x^2)*dx=0是不是题错了? -2/x)dx=0 ==>ln|y|-1/x-2ln|x|=ln|C| (C是积分常数) ==>ln|y|=ln|Cx²|+1/x ==>y=Cx²e^(1/x) ∴设原方程的通解为y=C(x)x²e^(1/x) (C(x)是关于x的函数) ... 履带式抛丸机哪家好_抛丸清理机_...
百度试题 题目求2y-x=(x-y)ln(x-y)确定的函数y=y(x)的微分dy. 相关知识点: 试题来源: 解析 2y-x=(x-y)ln(x-y)关于x求导得 反馈 收藏
这个方程式个隐函数,把y看作x的函数,两边同时求导得:2y'-1=(1-y')ln(x-y)+1-y'化简可得y'=(ln(x-y)+1)/(3-ln(x-y))y'就是所求的dy
求2y-x=(x-y)ln(x-y)确定的函数y=y(x)的微分dy. 参考答案:[解] 2y-x=(x-y)ln(x-y)关于x求导得 故
因为2y-x=(x-y)ln(x-y),所以,[3(x-y)+(2y-x)]dy=[2(x-y)+(2y-x)]dx(2x-y)dy=xdx①若2x-y=0,则dy=2dx② 若2x−y≠0,则dy= x 2x−ydx; 直接求微分,然后移项即可. 本题考点:复合函数微分法则. 考点点评:本题考查函数微分的求解.需要①注意变量的关系;②全部求微分后要进行化简....