=1+(n-1)x+x+(n-1)x^2>=1+nx这就是说,对n时也成立。所以问题得证。对任意整数n≥0,和任意实数x≥-1,有 (1+x)^n≥1+nx 成立。可以看到在n = 0,1,或x = 0时等号成立,而对任意正整数n≥2 和任意实数x≥-1,x≠0,有严格不等式:(1+x)^n>1+nx。伯努利不等式经常用作证明其他不等式...
顺便举个例子,n=1000 x=1000?
当x很小的时候,(1+x)^n=1+nx 例如 求1.00000001的122次方,你一定觉得很难算,其实就等于1.000...
不一定,当x很大,n为奇数时,是1-nx比较大
1加x的n次方减一趋..当x趋近于0时,1+x的n次方减一等价于nx,这是高数中常用的近似算法。当x无限趋近于0时,(1+x)的n次方近似等于1+nx,有助于快速计算复杂数学问题。此公式是等价无穷小的应用,可用于估算极限、求
1+x的n次方大于1+nx均值不等式在数学推导和证明中有着重要的应用,特别是在概率论、数理统计等领域的推导过程中经常会用到该不等式,可以简化数学运算的复杂程度,提高推导的效率。 6. 结语 通过本文的探讨,我们对1+x的n次方大于1+nx均值不等式有了更深入的了解。均值不等式是数学中重要的不等式之一,它不仅在理...
这将会是两个完全不同的结果,一个是指数式增长 一个仅仅是一次函数关系。你可以自己去考虑一下当x为...
亲,是在x比较接近于0的情况下吧~在几何画板上面可以反映出来~我就取n=0.5,5和10画,几个图说明问题哈~要解决原理问题,你要是要等上大学以后慢慢探索~1.6-|||-1.4-|||-1.2-|||-f(x)=(1+x).5-|||-08-|||-06-|||-gX71+0.5x-|||-0.4-|||-02 .5-|||-fx)=(1+X)5-|||-g(x)=1...
使用1+x的n次方-1的泰勒展开式。也可以1+x的n次方-1与nx,两个相除用洛必达求极限。洛必达法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。众所周知,两个无穷小之比或两个无穷大之比的极限可能存在,也可能不存在。因此,求这类极限时往往需要适当的变形,转化成可利用...
使用1+x的n次方-1的泰勒展开式,也可以 1+x的n次方-1与nx 两个相除用洛必达求极限