结果一 题目 1-cosx2 的等价无穷小怎么求如题 答案 因为1-cos(x)~x^2/2所以1-cos(x^2)~(x^2)^2/2=x^4/2若你指的是1-(cosx)^2就先展开里面的,然后平方,看指数最小的项1-(1-x^2/2)^2=1-(1-x^2+O(x^4))=x^2+O(x^4)相关推荐 11-cosx2 的等价无穷小怎么求如题 ...
1-cos2x等价无穷小是2x方。cos2x=1-2sinx^2、所以1-cos2x=2sinx^2、当x趋于0时,sinx~x、所以x趋于0时,sinx^2~x^2、所以1—cos2x等价无穷小是2x^2。 极限 数学分析的基础概念。它指的是变量在一定的变化过程中,从总的来说逐渐稳定的这样一种变化趋势以及所趋向的数值(极限值)。 极限方法是数学分析...
1-cos2x等价无穷小是2x^2。cos2x=1-2sinx^2。所以1-cos2x=2sinx^2。当x趋于0时,sinx~x。所以x趋于0时,sinx^2~x^2。所以1—cos2x等价无穷小是2x^2。同角三角函数的基本关系式 1、倒数关系:tanα ·cotα=1、sinα ·cscα=1、cosα ·secα=1。2、商的关系: sinα/cosα=t...
1-cos2x等价无穷小是2x方。 cos2x=1-2sinx^2。 所以1-cos2x=2sinx^2。 当x趋于0时,sinx~x。 所以x趋于0时,sinx^2~x^2。 所以1—cos2x等价无穷小是2x^2。 cos公式的其他资料: 它是周期函数,其最小正周期为2π,在自变量为2kπ(k为整数)时,该函数有极大值1;在自变量为(2k+1)π时,该函数有...
1-(cosx)²等价于sin²x。等价无穷小是无穷小的一种。在同一点上,这两个无穷小之比的极限为1,称这两个无穷小是等价的。等价无穷小也是同阶无穷小。从另一方面来说,等价无穷小也可以看成是泰勒公式在零点展开到一阶的泰勒展开公式。
1-(cosx)²等价于sin²x。根据同角的关系,sin²x+cos²x=1,可得1-(cosx)²等价于sin²x。等价无穷小是无穷小的一种。在同一点上,这两个无穷小之比的极限为1,称这两个无穷小是等价的。等价无穷小也是同阶无穷小。从另一方面来说,等价无穷小也可以看成...
所以1-cos(x^2)~(x^2)^2/2=x^4/2若你指的是1-(cosx)^2就先展开里面的,然后平方,看指数最小的项1-(1-x^2/2)^2=1-(1-x^2+O(x^4))=x^2+O(x^4) 解析看不懂?免费查看同类题视频解析查看解答 相似问题 求教一道关于等价无穷小的极限题~ 一道等价无穷小的问题 (1+x)^n-1 等价...
因为1-cos(x)~x^2/2 所以1-cos(x^2)~(x^2)^2/2=x^4/2 若你指的是1-(cosx)^2 就先展开里面的,然后平方,看指数最小的项 ~1-(1-x^2/2)^2=1-(1-x^2+O(x^4))=x^2+O(x^4)
1−cos◻∼12◻2,方框内可以填入任意无穷小。如果填入x2,那么就变成1−cosx2∼12...
1-cosx2 的等价无穷小怎么求 如题 因为1-cos(x)~x^2/2 所以1-cos(x^2)~(x^2)^2/2=x^4/2 若你指的是1-(cosx)^2 就先展开里面的,然后平方,看指数最小的项 1-(1-x^2/2)^2=1-(1-x^2+O(x^4))=x^2+O(x^4)