1*1卷积核,可以在保持feature map尺度不变的(即不损失分辨率)的前提下大幅增加非线性特性(利用后接的非线性激活函数),把网络做的很deep。 备注:一个filter对应卷积后得到一个feature map,不同的filter(不同的weight和bias),卷积以后得到不同的feature map,提取不同的特征,得到对应的specialized neuro。 四、从ful...
1.降维或升维,减少参数量 通过1*1卷积核的个数,来控制输出的通道数也就是维度 通过一次卷积操作,W*H*6将变为W*H*1,这样的话,使用5个1*1的卷积核,显然可以卷积出5个W*H*1,再做通道的串接操作,就实现了W*H*5 对于某个卷积层,无论输入图像有多少个通道,输出图像通道数总是等于卷积核数量! 图示: g...
1x1的卷积核由于大小只有1x1,所以并不需要考虑像素跟周边像素的关系,它主要用于调节通道数,对不同的通道上的像素点进行线性组合,然后进行非线性化操作,可以完成升维和降维的功能,如下图所示,选择2个1x1大小的卷积核,那么特征图的深度将会从3变成2,如果使用4个1x1的卷积核,特征图的深度将会由3变成4。 02 减少参数...
1×1卷积核主要功能是改变通道数目,致使减少计算量。在使用1×1卷积核的过程中,不改变原始图片的宽度和高度,它只是改变了通道数。它同时对原始图片的所有信道进行卷积,融合成一个值,如下图所示: 上图是一个图片的三个通道,通过 1×1卷积核,形成了与原始图片相同高与宽图片,只是通道变为了 1 的 features map...
1*1的卷积作用 实现跨通道的交互和信息整合,实现卷积核通道数的降维和升维,可以实现多个feature map的线性组合,而且可实现与全连接层的等价效果。 Bottleneck 怎样才能减少卷积层参数量? 如果仅仅引入多个尺寸的卷积核,会带来大量的额外的参数,受到Network In Network中1×1卷积核的启发,为了解决这个问题,他们往Incepti...
1.原理 对于1*1的卷积核来说,实际上就是实现不同通道数据之间的计算,由于卷积窗口为1*1,那么他不会对同一通道上相邻的数据进行改变,而是将不同通道之间的数据进行相加. 输入和输出具有相同的高和宽。输出中的每个元素来自输入中在高和宽上相同位置的元素在不同通道之间的按
在深度学习领域,1*1卷积核的运用广泛且高效。本文将从两个角度深入解析其作用。首先,1*1卷积核的运用能实现维度的调整,亦即通道数量的增减。在多通道的图像处理中,通道数反映了图像的复杂性,如RGB图像即有三个通道。若需调整通道数,可使用1*1*M的卷积核(M为新通道数),将图像的深度从现有...
1 x 1卷积核的作用 在incenption,resnet中使用到了大量的1x1卷积核,这些1x1的卷积核到底有哪些作用呢? 1、降维/升维。比如,一张500 * 500且厚度depth为100 的图片在20个filter上做1x1的卷积,那么结果的大小为50050020; 2、加入非线性。卷积层之后经过激励层,1*1的卷积在前一层的学习表示上添加了非线性激励...
1*1卷积核作用之我见 1X1卷积顾名思义就是卷积核的尺寸为1,不同与2维或3等卷积核,没有考虑在前一特征局部信息之间的关系。这里首先回顾一下卷积核的一些概念: 卷积核:可以看作对某个局部加权求和,它是对应局部感知的。这是是CNN的三大特征之一的局部感知,它的原理类似于盲人摸象,或者我们观察物体的时我们即不...
1*1卷积的作用 我最开始接触到 卷积应该是在阅读经典论文GoogleNet的时候,当然我说的是我第一次接触,并不代表GoogleNet(包含了InceptionV1-V4)是第一个使用 卷积的。在InceptionV1网络中,Inception模块长下面这样: 可以看到这个Inception模块中,由于每一层网络采用了更多的卷积核,大大增加了模型的参数量。这时候为了...