1×1卷积核可以通过改变特征图的深度(即通道数)来调整网络的复杂度。当使用少于输入通道数的卷积核时,它起到降维的作用;而使用更多卷积核时,则起到升维的作用。这样,网络可以根据需要增加或减少特征的复杂性。💻 计算成本优化: 在降维时,1×1卷积核可以显著减少后续层的参数数量和计算成本。例如,在一个深的卷...
1*1卷积核,可以在保持feature map尺度不变的(即不损失分辨率)的前提下大幅增加非线性特性(利用后接的非线性激活函数),把网络做的很deep。 备注:一个filter对应卷积后得到一个feature map,不同的filter(不同的weight和bias),卷积以后得到不同的feature map,提取不同的特征,得到对应的specialized neuro。 四、从ful...
1*1卷积的作用 卷积层参数量、计算量的计算方法 2 方法 2.1 1*1卷积的作用 (1)1*1卷积核可以通过控制卷积核数量实现降维或升维。从卷积层流程可以了解到卷积后的特征图通道数与卷积核的个数是相同的,所以当1x1卷积核的个数小于输入通道数量时,会...
3、实现了跨通道的信息组合,并增加了非线性特征使用1*1卷积核,实现降维和升维的操作其实就是channel间信息的线性组合变化,3*3,64channels的卷积核前面添加一个1*1,28channels的卷积核,就变成了3*3,28channels的卷积核,原来的64个channels就可以理解为跨通道线性组合变成了28channels,这就是通道间的信息交互。因为...
1*1的卷积作用 实现跨通道的交互和信息整合,实现卷积核通道数的降维和升维,可以实现多个feature map的线性组合,而且可实现与全连接层的等价效果。 Bottleneck 怎样才能减少卷积层参数量? 如果仅仅引入多个尺寸的卷积核,会带来大量的额外的参数,受到Network In Network中1×1卷积核的启发,为了解决这个问题,他们往Incepti...
1*1卷积核的作用: 1.放缩通道数目 加入现在有一个64*64*128的输入,需要通过卷积之后生成一个32*32*128,那我们直接可以对这个输入坐卷积或者做池化,就可以改变输入的长和宽,因为输入和输出的通道数目都是相同的。但是如果我们需要输出一个64*64*192。那这个时候就必须要用到1*1的... ...
加入1x1卷积后可以降低输入的通道数,卷积核参数、运算复杂度也就降下来了 2.跨通道的信息融合: 上图是输入4个通道的原图,用两个卷积核w1和w2对图像进行卷积; w1分别在四个通道上进行卷积,然后结果相加就得到了w1卷积后的结果,融合了四个通道;w2同样,再做通道连接,也就形成了2维的结果。
改变输出通道数:1*1卷积可以调整输出的通道数。 降维:通过一次卷积操作,W*H*6将变为W*H*1,使用5个1*1的卷积核,显然可以卷积出5个W*H*1,再做通道的串接操作,就实现了W*H*5。 升维:通过一次卷积操作,W*H*6将变成W*H*1,使用7个1*1的卷积核,显然可以卷积出7个W*H*1,再做通道的串接操作...
1×1卷积,又称为Network in Network 如果卷积的输出输入都只是一个平面,那么1x1卷积核并没有什么意义,它是完全不考虑像素与周边其他像素关系。 但卷积的输出输入是长方体,所以1x
1*1卷积核的作用 1.改变模型维度 二维的输入数据(如6∗66∗6)和1∗11∗1的卷积核 卷积,相当于原输入数据直接做乘法 三维的输入数据(如6∗6∗326∗6∗32)和1∗1∗321∗1∗32的卷积核卷积,相当于卷积核的32个数对原输入数据的32个数加权求和,结果填到最右侧对应方框中...