+n×n=n(n+1)(2n+1)/6 来历是:用完全立方公式和等差数列求和公式推导 因为:(n+1)^3=n^3+3n^2+3n+1 在这个等式中,让依次取从1开始的n个连续的自然数,就得到n个相对应的等式,2^3=1^3+3×1^2+3×1+1 3^3=2^3+3×2^2+3×2+1 4^3=3^3+3×3^2+3×3+1 ……… (n+1)^3=...
1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6 利用立方差公式 n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)] =n^2+(n-1)^2+n^2-n =2*n^2+(n-1)^2-n 2^3-1^3=2*2^2+1^2-2 3^3-2^3=2*3^2+2^2-3 4^3-3^3=2*4^2+3^2-4 .n^3-(n-1)^3=2*n^2... ...
1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6 利用立方差公式 n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)] =n^2+(n-1)^2+n^2-n =2*n^2+(n-1)^2-n 2^3-1^3=2*2^2+1^2-2 3^3-2^3=2*3^2+2^2-3 4^3-3^3=2*4^2+3^2-4 .n^3-(n-1)^3=2*n^2... ...
(n+1)^3=n^3+3n^2+3n+1 将这个等式中等号两边的式子分别加起来,划去等号两边相同的数,就得到,(n+1)^3=1+3(1^2+2^2+3^2+……+n^2)+3(1+2+3+……+n)+n 第二个括号内的和就是一个等差数列,和为n(1+n)÷2,于是 (n+1)^3=1+3(1^2+2^2+3^2+……+n^2)+3n(n+1)÷2+...
平方和公式n(n+1)(2n+1)/6 即1^2+2^2+3^2+…+n^2=n(n+1)(2n+1)/6 (注:N^2=N的平方) 证明1+4+9+…+n^2=N(N+1)(2N+1)/6 证法一(归纳猜想法): 1、N=1时,1=1(1+1)(2×1+1)/6=1 2、N=2时,1+4=2(2+1)(2×2+1)/6=5 3、设N=x时,公式成立,即1+4+...
…+n^2=n(n+1)(2n+1)/6 利用立方差公式 n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)] =n^2+(n-1)^2+n^2-n =2*n^2+(n-1)^2-n 2^3-1^3=2*2^2+1^2-2 3^3-2^3=2*3^2+2^2-3 4^3-3^3=2*4^2+3^2-4 ... n^3-(n-1)^3=2*n...
数列求和问题涉及从1的平方到n的平方之和,方法多样,本文介绍一种直观有趣的方法。想象一个由圆圈构成的正三角形,每行圆圈数目依次增加。第一行有一个圆圈,数字为1;第二行有2个圆圈,数字都为2,以此类推,第n行有n个圆圈,圆圈内的数字均为n。我们要求解的是这些圆圈内数字的平方和。将这个...
N的平方等于N²,因为N是用字母表示数的式子,所以它的平方也只能用代数式表示。
百度试题 结果1 题目的平方有什么规律 (1,2,3,.N)均位 相关知识点: 试题来源: 解析 1的平方是1 2的平方是4=1+3 3的平方是9=1+3+5 4的平方是16=1+3+5+7 …… N的平方是N^2=1+3+5+…… (前N个奇数) 反馈 收藏
(n+1)^3=n^3+3n^2+3n+1 将这个等式中等号两边的式子分别加起来,划去等号两边相同的数,就得到,(n+1)^3=1+3(1^2+2^2+3^2+……+n^2)+3(1+2+3+……+n)+n 第二个括号内的和就是一个等差数列,和为n(1+n)÷2,于是 (n+1)^3=1+3(1^2+2^2+3^2+……+n^2)+3n(n+1)÷2+...