洛必达法则是对分子分母同时求导,适用于零比零型或者无穷比无穷型,上题式子求导结果是对的,但是和洛必达法则没有一点关系。当x趋近于1时sinπ/2x为0所以最后极限为1
y=根号 的导数为 y' = -x/根号;y=arccosx 的导数为 y' = -1/根号。对于函数 y=根号:首先,我们知道这是一个复合函数,由常数函数和线性函数组成的外层函数与圆的方程相结合形成。我们可以利用链式法则求导。观察到根号内的部分 1-x^2,对其进行微分得到 d/dx = -2x。同时,根号部分的导...
令t=cosx,则u=1-t²和y=√u dt/dx=-sinx du/dt=-2t dy/du=1/2√u ∴dy/dx=dy/du·du/dt·dt/dx =1/2√u·(-2t)·(-sinx)=tsinx/√u,逐步代回 =cosxsinx/√(1-t²)=sinxcosx/√(1-cos²x)
解:由复合函数求导法则,对于y=f(u)、u=g(x),有:y'=f'(u)·g'(x)因此,对于:f(x)=√(1-cos³x),有:f'(x)=-{1/[2√(1-cos³x)]}·(1-cos³x)'f'(x)=-{1/[2√(1-cos³x)]}·(-3cos²x)·(cosx)'f'(x)=-{1/[2√(1-...
解析 1) 对y=√(1-x²)求导 设f(x)=y=√(1-x²),g(x)=1-x²,则y=f[g(x)] ∴y'=f'[g(x)]=f'[g(x)]·g'(x) =(½)×1/√(1-x²)×(-2x)=-x/√(1-x²) 2)对y=(arccosx)求导 y=(arccosx)=-1/√(1-x²) ...
求导y=1/根号x乘cosx 扫码下载作业帮搜索答疑一搜即得 答案解析 查看更多优质解析 解答一 举报 y=1/x*cosxy'=(-x^-2)cosx-1/xsinx 解析看不懂?免费查看同类题视频解析查看解答 相似问题 Y= 根号下x+根号下x+根号下x求导 求y=sinX乘根号下cosX取最大值时,cosX的值.【用求导的方法】 求导(1)y=(...
不多说了,看了就明白,用乘法则和链式法则
解析 1)y = (1+cosx)^(1/x), 利用对数求导法:取对数,得 ln|y| = (1/x)ln(1+cosx),求导,得 y'/y = [x(-sinx)/(1+cosx) - ln(1+cosx)]/x^2于是 y' = ……. 2)y = [(x-1)^3]*√{[(x-2)^2]/(x-3)...反馈 收藏 ...
百度试题 结果1 题目求导y=(3次根号下x)* (1-cosx) 相关知识点: 试题来源: 解析 ∵y=x^(1/3)*(1-cosx)∴y'=(x^(1/3))'*(1-cosx)+x^(1/3)*(1-cosx)'=(1-cosx)/(3x^(2/3))+x^(1/3)*sinx.反馈 收藏
百度试题 结果1 题目根号(1-x^2)arccosx 求导 相关知识点: 试题来源: 解析 y'=-2x*(arccosx)+(1-x^2)*(-1/√(1-x^2)) =-2x*(arccosx)-(1-x^2)/√(1-x^2)) =-2x*(arccosx)-√(1-x^2) 反馈 收藏