如下图所示,如果选择2个filters的1x1卷积层,那么数据就从原本的depth 3 降到了2。若用4个filters,则起到了升维的作用。 1. 相当于输入(6×6)每个元素对应的所有通道分别进行了全连接运算,输出即为filters的数量。 2. 对于池化层,可以压缩高度和宽度,1×1卷积,可以压缩或增加通道数。 降维( dimension reduct
1*1卷积的作用 卷积层参数量、计算量的计算方法 2 方法 2.1 1*1卷积的作用 (1)1*1卷积核可以通过控制卷积核数量实现降维或升维。从卷积层流程可以了解到卷积后的特征图通道数与卷积核的个数是相同的,所以当1x1卷积核的个数小于输入通道数量时,会...
三、作用: 1、降维(减少参数) 例子1 : GoogleNet中的3a模块 输入的feature map是28×28×192 1×1卷积通道为64 3×3卷积通道为128 5×5卷积通道为32 左图卷积核参数:192 × (1×1×64) +192 × (3×3×128) + 192 × (5×5×32) = 387072 右图对3×3和5×5卷积层前分别加入了通道数为96和...
例子:使用1*1卷积核,实现降维和升维的操作其实就是channel间信息的线性组合变化,3*3,64channels的卷积核后面添加一个1*1,28channels的卷积核,就变成了3*3,28channels的卷积核,原来的64个channels就可以理解为跨通道线性组合变成了28channels,这...
增加网络非线性拟合能力:1*1卷积后通常会接激活函数,通过增加多个1*1卷积层,可以接入多个激活函数,增强网络的非线性拟合能力。 跨通道信息交融:1*1卷积允许在不同通道之间进行信息的线性组合和变换,实现跨通道的信息交互,这有助于模型更好地理解和利用多通道输入数据中的信息。
1*1的卷积 原来看面经的时候经常看到这么个问题,问的是关于1*1卷积的好处和特点之类的。1*1的卷积,顾名思义就是用大小为1*1的卷积核去做卷积,但也仅仅是长宽为1,卷积核的通道数不做限制。 通过1*1的卷积,每次只看一个像素点里多个通道的信息,不会识别一个通道里面的其他空间信息。因此1*1卷积侧重于融合...
加入1x1卷积后可以降低输入的通道数,卷积核参数、运算复杂度也就降下来了 2.跨通道的信息融合: 上图是输入4个通道的原图,用两个卷积核w1和w2对图像进行卷积; w1分别在四个通道上进行卷积,然后结果相加就得到了w1卷积后的结果,融合了四个通道;w2同样,再做通道连接,也就形成了2维的结果。
1×1卷积的主要作用包括以下几点:降维和升维:1×1卷积核可以通过控制卷积核的数量来有效地进行特征图的降维或升维操作。在不改变特征图空间尺寸的前提下,调整通道数,从而优化计算量和参数量。减少计算量和参数量:相比于大尺寸的卷积核,1×1卷积核的计算量和参数量都大大减少。这在深层神经网络中...
pooling通常出现在1x1卷积之前,紧随刚被卷积后的特征映射。这种设计无需实验验证顺序影响,旨在优化网络性能。Inception结构通过整合1x1卷积的作用,使得网络能够在多种维度上进行特征提取,提高识别准确率,同时避免尺寸对结果的影响。这一设计策略展示了深度学习网络中1x1卷积的显著优势,即灵活性和高效性。