Meta为了弄清楚孟德海到底黑化了没最近开源了一个AI语音-视频识别系统:MuAViC,让大家动一动手指头,就能看懂没有声音的人物讲了啥,还能精确识别嘈杂背景当中特定人物的语音。 Meta利用TED/TEDx的视频语音素材,制作了MuAViC中的数据集。其中包含了1200小时,9种语言的文本语音视频素材,还有英语与6种语言之间的双向翻译...
Meta最近开源了一个AI语音-视频识别系统:MuAViC,让大家动一动手指头,就能看懂没有声音的人物讲了啥,还能精确识别嘈杂背景当中特定人物的语音。 0 Meta利用TED/TEDx的视频语音素材,制作了MuAViC中的数据集。其中包含了1200小时,9种语言的文本语音视频素材,还有英语与6种语言之间的双向翻译。 语音识别数据的详细内容...
对于视听语音识别(AVSR)和视听语音翻译(AVST),研究人员使用英语AV-HuBERT大型预训练模型,该模型结合LRS3-TED和 VoxCeleb2的英语部分进行训练。 研究人员按照AV-HuBERT论文中的方式来微调超参数,不同之处在于他们将双语模型微调为30K更新,将多语言 AVSR 模型微调为90K更新。研究人员分别冻结X-En AVST和En-X AVST...
1、安装Whisper包 pipinstallgit+https://github.com/openai/whisper.git 如果安装成功,在cmd中输入whis...
Meta最近开源了一个AI语音-视频识别系统:MuAViC,让大家动一动手指头,就能看懂没有声音的人物讲了啥,还能精确识别嘈杂背景当中特定人物的语音。 Meta利用TED/TEDx的视频语音素材,制作了MuAViC中的数据集。其中包含了1200小时,9种语言的文本语音视频素材,还有英语与6种语言之间的双向翻译。
话不多说,让我们看看这个被“好评如潮”的语音系统究竟是怎么回事。 逼近人类水平的语音识别系统 首先,Whisper最大特点是它使用的超大规模训练集: 它使用从网络上收集的68万小时的多语言、多任务监督数据进行训练。 这导致数据集的内容非常多元化,涵盖了许多不同环境、不同录音设备下、不同语言的音频。
Meta最近开源了一个AI语音-视频识别系统:MuAViC,让大家动一动手指头,就能看懂没有声音的人物讲了啥,还能精确识别嘈杂背景当中特定人物的语音。 Meta利用TED/TEDx的视频语音素材,制作了MuAViC中的数据集。其中包含了1200小时,9种语言的文本语音视频素材,还有英语与6种语言之间的双向翻译。
Day20 - 语言识别系统中文指南 作者:©黎跃春-追时间的人 运行项目 $ npm install $ npm start 1. 2. 浏览器打开http://localhost:3000/index-FINISHED.html 效果图如下: 程序源码 HTML代码 <!DOCTYPE html> Speech Detection html { font-size: 10px; ...
Meta利用TED/TEDx的视频语音素材,制作了MuAViC中的数据集。其中包含了1200小时,9种语言的文本语音视频素材,还有英语与6种语言之间的双向翻译。 语音识别数据的详细内容: 英语到6种语言翻译的素材具体包括: 6种语言到英语的翻译素材具体包括: 论文 针对这个系统,Mate的研究人员也发布了论文介绍它与现有SOTA的对比。