通过上述案例可以看出,微软新型语言识别系统凭借其卓越的性能和广泛的适用性,正在逐步改变我们的日常生活。无论是提高工作效率,还是改善生活质量,它都展现出了无限的可能性。 四、总结 综上所述,微软研究人员开发的这款专为嵌入式设备设计的新型语言识别系统,不仅继承了Sphinx语音识别软件的卓越性能,还在多个方面进行了...
Meta为了弄清楚孟德海到底黑化了没最近开源了一个AI语音-视频识别系统:MuAViC,让大家动一动手指头,就能看懂没有声音的人物讲了啥,还能精确识别嘈杂背景当中特定人物的语音。 Meta利用TED/TEDx的视频语音素材,制作了MuAViC中的数据集。其中包含了1200小时,9种语言的文本语音视频素材,还有英语与6种语言之间的双向翻译...
Meta最近开源了一个AI语音-视频识别系统:MuAViC,让大家动一动手指头,就能看懂没有声音的人物讲了啥,还能精确识别嘈杂背景当中特定人物的语音。 0 Meta利用TED/TEDx的视频语音素材,制作了MuAViC中的数据集。其中包含了1200小时,9种语言的文本语音视频素材,还有英语与6种语言之间的双向翻译。 语音识别数据的详细内容...
对于视听语音识别(AVSR)和视听语音翻译(AVST),研究人员使用英语AV-HuBERT大型预训练模型,该模型结合LRS3-TED和 VoxCeleb2的英语部分进行训练。 研究人员按照AV-HuBERT论文中的方式来微调超参数,不同之处在于他们将双语模型微调为30K更新,将多语言 AVSR 模型微调为90K更新。研究人员分别冻结X-En AVST和En-X AVST...
Meta利用TED/TEDx的视频语音素材,制作了MuAViC中的数据集。其中包含了1200小时,9种语言的文本语音视频素材,还有英语与6种语言之间的双向翻译。 语音识别数据的详细内容: 英语到6种语言翻译的素材具体包括: 6种语言到英语的翻译素材具体包括: 论文 针对这个系统,Mate的研究人员也发布了论文介绍它与现有SOTA的对比。
Meta最近开源了一个AI语音-视频识别系统:MuAViC,让大家动一动手指头,就能看懂没有声音的人物讲了啥,还能精确识别嘈杂背景当中特定人物的语音。 Meta利用TED/TEDx的视频语音素材,制作了MuAViC中的数据集。其中包含了1200小时,9种语言的文本语音视频素材,还有英语与6种语言之间的双向翻译。
话不多说,让我们看看这个被“好评如潮”的语音系统究竟是怎么回事。 逼近人类水平的语音识别系统 首先,Whisper最大特点是它使用的超大规模训练集: 它使用从网络上收集的68万小时的多语言、多任务监督数据进行训练。 这导致数据集的内容非常多元化,涵盖了许多不同环境、不同录音设备下、不同语言的音频。
近几年来语音识别技术得到了迅速发展,从手机中的Siri语音智能助手、微软的小娜以及各种平台的智能音箱等等,各种语音识别的项目得到了广泛应用。 语音识别属于感知智能,而让机器从简单的识别语音到理解语音,则上升到了认知智能层面,机器的自然语言理解能力如何,也成为了其是否有智慧的标志,而自然语言理解正是目前难点。
机器学习语言识别智能系统开源 开源语音识别模型 Whisper是一个通用语音识别模型。它是在各种音频的大型数据集上训练的,也是一个多任务模型,可以执行多语言语音识别以及语音翻译和语言识别。 人工智能公司 OpenAI 拥有 GTP-3 语言模型,并为 GitHub Copilot 提供技术支持的 ,宣布开源了Whisper 自动语音识别系统,Open AI...
OpenAI 最近发布了一个名为 Whisper 的语音识别模型。与 DALLE-2 和 GPT-3 不同,Whisper 是一个免费的开源模型。 ——1—— 什么是Whisper语言识别模型 Whisper 是一种自动语音识别模型,基于从网络上收集的 680,000 小时多语言数据进行训练。根据 OpenAI的介绍,该模型对口音、背景噪音和技术语言具有很好的鲁棒性...