1.半群、群及独异点的关系是( ) A. uf0ccuf0cc B. uf0ccuf0cc C. uf0ccuf0cc D. uf0ccuf0cc2.设G是具有n个结点的无向简单图,若G中每一对结点的度数之和与n-1的关系为( )时,则在G中存在一条汉密尔顿路, E. 大于 F. 大于等于 G. 等于 . 小于第二题 B具有汉密尔顿回路的图称作汉密尔...
1、第二讲 半群、群和子群,定义 一个代数系统,其中S是非空集合,*是S上的 一个二元运算,如果运算*是封闭的,则称代数系统 为广群。,一. 广群,二. 半群,定义 一个代数系统,其中S是非空集合,*是S上的 一个二元运算,如果 1)运算*是封闭的。 2)运算*是可结合的,即对任意的x,y,zS,满足 (x * y...
半群和独异点半群和独异点重点重点: : 半群和独异点的性质半群和独异点的性质难点难点: :重点和难点重点和难点: :一、半群与独异点一、半群与独异点半群的定义:半群的定义: 定义定义1 设A=为代数,若 (1) 集合S关于运算 是封闭的, (2) S上运算 满足结合律,则称代数为半群半群(semigroupssemigroups)...
二、半群和独异点、群与子群
【问答题】判断下列代数系统是否构成半群、独异点和群。 ( 1 ) +,+> , Z + 是正整数, + 是普通加法。 ( 2 ) , M n (R) 是由实数组成的 n 阶方阵, + 是普通加法。 ( 3 ) 为半群, P ( B ) 是集合 B 的幂集,∩为集合交运算。也是独异点,其中 ( 4 ) 为半群, A A 是 A 上的函数...
百度试题 题目半群、群及独异点的关系是( ) A. {群}{独异点}{半群} B. {独异点}{半群}{群} C. {独异点}{群}{半群} D. {半群}{群}{独异点} 相关知识点: 试题来源: 解析 A.{群}{独异点}{半群} 反馈 收藏
离散数学中的1.分别列出:广群、半群、独异点、群的概念 请老师些帮忙拉 相关知识点: 试题来源: 解析 群是抽象代数中具有简单的二元运算的代数结构,有时为了方便,在不致混淆的情况下,也常把群的代数运算称作“乘法”,且把a*b简记为ab.反馈 收藏
(1),因此*满足结合律,G是半群; 存在幺元,,因此G是独异点; ,且,所以G是群。 (2)对乘法封闭,且乘法满足结合律,因而是半群; ,1是关于乘法的幺元,故是独异点; ,x是正有理数,1/x也是正有理数,因而,且,故,于是是群。 (3)对加法封闭,且加法满足结合律,因此是半群; 没有幺元,因而不是独异点,且,x无...
G满足群的全部四个条件,所以G是群。 (2) Q*为正有理数,运算是普通的乘法。 解:封闭性:满足,因为任意两个正有理数的乘积仍是正有理数。 结合律:满足。因为已知任何数对乘法均满足结合律,故正有理数当然也满足。 存在单位元e=1,1 是正有理数。 任一元素逆元的存在性:任取正有理数a=m/n,m与n都...
若*是S上的二元运算(封闭),则称<S, *>为广群。若<S, *>为广群,且*在S上可结合,则称<S, *>为半群。含有么元的半群称为独异点。么元:有e∈S,对任意a∈S,都有e*a=a,那么e就是么元可结合的意思是a*b*c = (a*b)*c = a* (b* c)PS:这里的*只代表是一种运算,不是乘法 本回答由...