LASSO回归,又称L1正则化,是另一种处理多重共线性问题的线性回归方法。与岭回归不同,LASSO回归在损失函数中添加的正则化项是回归系数的绝对值之和,其数学表达式如下: 与岭回归相比,LASSO回归有以下特点: LASSO回归具有特征选择的能力,它可以将某些回归系数缩减至零,从而自动选择重要的特征。 可以用于稀疏数据集的建模。
Lasso回归采用一范数来约束,使参数非零个数最少。而Lasso和岭回归的区别很好理解,在优化过程中,最优解为函数等值线与约束空间的交集,正则项可以看作是约束空间。可以看出二范的约束空间是一个球形,而一范的约束空间是一个方形,这也就是二范会得到很多参数接近0的值,而一范则尽可能非零参数最少。值得注意...
7.Lasso回归:Lasso回归的本质和岭回归一样,只是惩罚项的形式不同(正则化的方法不同) 8.难点:岭和Lasso的对比: 1)效果相似,在适当的正则化强度下,都可以提高CV的准确率。 如何选择最佳的点? 黄点代表的值是CV验证准确率的平均值,而蓝色线段的长度代表CV准确率平均值的标注误差。 首先选择均值最小的点,找到其...
岭回归与Lasso回归最大的区别在于岭回归引入的是L2范数惩罚项,Lasso回归引入的是L1范数惩罚项,Lasso回归能够使得损失函数中的许多θ均变成0,这点要优于岭回归,因为岭回归是要所有的θ均存在的,这样计算量Lasso回归将远远小于岭回归。 可以看到,Lasso回归最终会趋于一条直线,原因就在于好多θ值已经均为0,而岭回归却...
岭回归与Lasso回归最大的区别在于岭回归引入的是L2范数惩罚项,Lasso回归引入的是L1范数惩罚项,Lasso回归能够使得损失函数中的许多θ均变成0,这点要优于岭回归,因为岭回归是要所有的θ均存在的,这样计算量Lasso回归将远远小于岭回归。 从贝叶斯角度看,lasso(L1 正则)等价于参数ww 的先验概率分布满足拉普拉斯分布,而 ...
区别:lasso回归和岭回归(ridge regression)其实就是在标准线性回归的基础上分别加入L1和L2正则化(regularization)。L1正则化会比L2正则化让线性回归的权重更加稀疏,即使得线性回归中很多权重为0,而不是接近0。或者说,L1正则化(lasso)可以进行feature selection,而L2正则化(ridge)不行。从贝叶斯角度看,lasso(L1正则)等...
Lasso回归和岭回归的同和异: 相同: 都可以用来解决标准线性回归的过拟合问题。 不同: lasso 可以用来做 feature selection,而 ridge 不行。或者说,lasso 更容易使得权重变为 0,而 ridge 更容易使得权重接近 0。 从贝叶斯角度看,lasso(L1 正则)等价于参数ww 的先验概率分布满足拉普拉斯分布,而 ridge(L2 正则)等...
Lasso回归:压缩变量,起降维作用;模处理 Lasso回归等于线性回归 + L1范数(L1是拉普拉斯分布) 1.6 弹性网络回归(ElasticNetRegression) ElasticNet 回归,即岭回归和Lasso技术的混合。弹性网络是一种使用 L1, L2 范数作为先验正则项训练的线性回归模型。 这种组合允许学习到一个只有少量参数是非零稀疏的模型,就像 Lasso ...