解析 1、 从 n个数据对象任意选择 k 个对象作为初始聚类中心;2、 根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离;并根据最小距离重新对相应对象进行划分;3、 重新计算每个(有变化)聚类的均值...结果一 题目 简述K-means算法的基本过程及其不足.《数据挖掘》作业题追分100 答案 1、 从...
过程:1、 从 n个数据对象任意选择 k 个对象作为初始聚类中心;2、 根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离;并根据最小距离重新对相应对象进行划分;3、 重新计算每个(有变化)聚类的均值(中心对象)4、循环步骤2和3,直到每个聚类不再发生变化为止 缺点:1、聚类个...
答案解析 查看更多优质解析 解答一 举报 1、 从 n个数据对象任意选择 k 个对象作为初始聚类中心;2、 根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离;并根据最小距离重新对相应对象进行划分;3、 重新计算每个(有变化)聚类的均值... 解析看不懂?免费查看同类题视频解析查看解答 ...