百度试题 题目神经网络中参数极多,常用的初始化方法有哪些? A.全零初始化B.随机初始化C.加载预训练模型相关知识点: 试题来源: 解析 B,C
1.随机初始化(Random Initialization) 参数按照均匀分布或高斯分布随机初始化。适用于多种神经网络结构和激活函数,是最常用的初始化方法之一。 2.零初始化(Zero Initialization) 所有参数初始化为零。适用于线性激活函数(例如恒等函数)的浅层网络,但不适用于深层网络,因为每个神经元在反向传播时将具有相同的梯度。 3....
He初始化将权重的初始范围设置为更大,以更好地适应ReLU激活函数的特性。适用范围:适用于激活函数为ReLU的神经网络层。 下面是Python代码演示这些参数初始化方法: importnumpyasnpdefrandom_init(shape):returnnp.random.randn(*shape)*0.01defzero_init(shape):returnnp.zeros(shape)defxavier_init(shape,fan_in,fan...
He初始化将权重的初始范围设置为更大,以更好地适应ReLU激活函数的特性。适用范围:适用于激活函数为ReLU的神经网络层。 下面是Python代码演示这些参数初始化方法: importnumpyasnpdefrandom_init(shape):returnnp.random.randn(*shape)*0.01defzero_init(shape):returnnp.zeros(shape)defxavier_init(shape,fan_in,fan...