专题: 平面图形的认识与计算 分析: 直角三角形中,30°角所对的边是斜边的一半,据此解答. 解答: 解:直角三角形中,30°角所对的边是斜边的一半. 故答案为:一半. 点评: 本题主要考查了学生对直角三角形特征的认识. 分析总结。 直角三角形中30角所对的边是斜边的一半据此解答反馈...
解答解:在直角三角形中,30度角所对的直角边等于斜边的一半.故答案为:正确 点评本题考查了含30度角的直角三角形的性质,熟记在直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键. 解:在直角三角形中,30度角所对的直角边等于斜边的一半.故答案为:正确分析总结。 点评本题考查了含30度角的直角三角形...
解析 【解析】一半解直角三角形中,30°角所对的边是斜边的一半故答案为:一半 结果一 题目 【题目】直角三角形中,30°角所对的边是斜边的 答案 【解析】直角三角形中,30°角所对的边是斜边的一半故答案为:一半相关推荐 1【题目】直角三角形中,30°角所对的边是斜边的 反馈 收藏 ...
【在直角三角形中,30°角所对的直角边等于斜边的一半】 设在直角三角形ABC中,∠BAC=90°,∠ACB=30°,求证:AB=1/2BC。 【证法1】 延长BA到D,使AD=AB,连接CD。 ∵∠BAC=90°,AB=AD, ∴AC垂直平分BD, ∴BC=CD(垂直平分线上的点到线段两端距离相等), ∵∠B=90°-∠ACB=90°-30°=60°, ∴△...
所以直角三角形,30度角所对的直角边是斜边的一半。结果一 题目 证明命题:直角三角形中角所对的直角边是斜边的一半。 答案 已知:如图中求证:A E C B证明:延长到,使得,连接,,,是等边三角形,,, 写出已知求证,延长BC到E,使得CE=CB,连接AE.证明△ABE是等边三角形即可解决问题. 结果二 题目 证明命题:直角...
答案解析 查看更多优质解析 解答一 举报 直角三角形中,30°角所对的边是斜边的一半.故答案为:一半. 直角三角形中,30°角所对的边是斜边的一半,据此解答. 本题考点:分数的意义、读写及分类;三角形的分类. 考点点评:本题主要考查了学生对直角三角形特征的认识. 解析看不懂?免费查看同类题视频解析查看解答 ...
∴△ABD 为等边三角形, ∴AB=BD ,∴BC=CD=1/2BD=1/2AB,即 BC=1/2AB .故答案为:略相关推荐 1【题目】证明:在直角三角形中,30°角所对的直角边等于斜边的一半 反馈 收藏
在直角三角形中,30度所对的边是斜边的一半,这句话对吗? 相关知识点: 试题来源: 解析 B.本题考查了直角三角形30°角所对的直角边等于斜边的一半的性质的证明,根据性质的来源作辅助线构造成等边三角形和全等三角形是解题的关键,作出图形更形象直观。
所以逆定理就是如果直角三角形中一条直角边是斜边一半,那么该直角边所对的角就是30°。 证明:在直角三角形ACB中, 延长BC,使BC=CD,则AC是BD的垂直平分线, 所以AB=AD 又因为, 所以AB=BD 所以AB=BD=AD 所以是等边三角形, 因为 所以 即在直角三角形ACB中,直角边BC所对应的 所以逆定理就是如果直角三角形中...
1 2AB. 本题考点:含30度角的直角三角形. 考点点评:本题考查了直角三角形30°角所对的直角边等于斜边的一半的性质的证明,根据性质的来源作辅助线构造成等边三角形和全等三角形是解题的关键,作出图形更形象直观. 解析看不懂?免费查看同类题视频解析查看解答 ...